Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields
Compositio Mathematica, Tome 76 (1990) no. 1-2, pp. 69-85.
@article{CM_1990__76_1-2_69_0,
     author = {Esnault, H\'el\`ene and Viehweg, Eckart},
     title = {Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields},
     journal = {Compositio Mathematica},
     pages = {69--85},
     publisher = {Kluwer Academic Publishers},
     volume = {76},
     number = {1-2},
     year = {1990},
     mrnumber = {1078858},
     zbl = {0742.14020},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1990__76_1-2_69_0/}
}
TY  - JOUR
AU  - Esnault, Hélène
AU  - Viehweg, Eckart
TI  - Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields
JO  - Compositio Mathematica
PY  - 1990
SP  - 69
EP  - 85
VL  - 76
IS  - 1-2
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1990__76_1-2_69_0/
LA  - en
ID  - CM_1990__76_1-2_69_0
ER  - 
%0 Journal Article
%A Esnault, Hélène
%A Viehweg, Eckart
%T Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields
%J Compositio Mathematica
%D 1990
%P 69-85
%V 76
%N 1-2
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1990__76_1-2_69_0/
%G en
%F CM_1990__76_1-2_69_0
Esnault, Hélène; Viehweg, Eckart. Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields. Compositio Mathematica, Tome 76 (1990) no. 1-2, pp. 69-85. http://archive.numdam.org/item/CM_1990__76_1-2_69_0/

1 H. Esnault and E. Viehweg, Dyson's lemma for polynomials in several variables (and the theorem of Roth). Invent. Math. 78 (1984) 445-490. | MR | Zbl

2 H. Esnault and E. Viehweg, Logarithmic De Rham complexes and vanishing theorems. Invent. Math. 86 (1986) 161-194. | MR | Zbl

3 T. Fujita, On Kähler fibre spaces over curves. J. Math. Soc. Japan 30 (1978) 779-794. | MR | Zbl

4 H. Grauert, Mordell's Vermutung über rationale Punkte auf algebraischen Kurven und Funktionenkörper. Publ. Math. IHES 25 (1965) 131-149. | Numdam | MR | Zbl

5 Y. Kawamata, A generalization of Kodaira-Ramanujam's vanishing theorem. Math. Ann. 261 (1982) 57-71. | Zbl

6 Yu. I. Manin, Rational points on an algebraic curve over function fields. Trans. Amer. Math. Soc. 50 (1966) 189-234. | Zbl

7 S. Mori, Classification of higher-dimensional varieties. Algebraic Geometry. Bowdoin 1985. Proc. of Symp. in Pure Math. 46 (1987) 269-331. | MR | Zbl

8 A.N. Parshin, Algebraic curves over function fields I. Math. USSR Izv. 2 (1968) 1145-1170. | Zbl

9 L. Szpiro, Séminaire sur les pinceaux de courbes de genre au moins deux. Astérisque 86 (1981). | Numdam | MR | Zbl

10 E. Viehweg, Vanishing theorems. J. Reine Angew. Math. 335 (1982) 1-8. | MR | Zbl

11 E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces. Adv. Stud. Pure Math. 1 (1983) 329-353 North-Holland. | MR | Zbl

12 E. Viehweg, Vanishing theorems and positivity in algebraic fibre spaces. Proc. Intern. Congr. Math., Berkeley 1986, 682-687. | MR | Zbl

13 E. Viehweg, Weak positivity and the stability of certain Hilbert points. Invent. Math. 96 (1989) 639-667. | MR | Zbl

14 P. Vojta, Mordell's conjecture over function fields. Preprint 1988. | Zbl

15 A.N. Parshin, Algebraic curves over function fields. Soviet Math. Dokl. 9 (1968) 1419-1422. | Zbl