@article{CM_1991__78_1_1_0, author = {Oledzki, Wies{\l}aw J.}, title = {On the eta-invariant of $\mathrm {Pin}^+$-operator on some exotic 4-dimensional projective space}, journal = {Compositio Mathematica}, pages = {1--27}, publisher = {Kluwer Academic Publishers}, volume = {78}, number = {1}, year = {1991}, zbl = {0725.57017}, language = {en}, url = {http://archive.numdam.org/item/CM_1991__78_1_1_0/} }
TY - JOUR AU - Oledzki, Wiesław J. TI - On the eta-invariant of $\mathrm {Pin}^+$-operator on some exotic 4-dimensional projective space JO - Compositio Mathematica PY - 1991 SP - 1 EP - 27 VL - 78 IS - 1 PB - Kluwer Academic Publishers UR - http://archive.numdam.org/item/CM_1991__78_1_1_0/ LA - en ID - CM_1991__78_1_1_0 ER -
%0 Journal Article %A Oledzki, Wiesław J. %T On the eta-invariant of $\mathrm {Pin}^+$-operator on some exotic 4-dimensional projective space %J Compositio Mathematica %D 1991 %P 1-27 %V 78 %N 1 %I Kluwer Academic Publishers %U http://archive.numdam.org/item/CM_1991__78_1_1_0/ %G en %F CM_1991__78_1_1_0
Oledzki, Wiesław J. On the eta-invariant of $\mathrm {Pin}^+$-operator on some exotic 4-dimensional projective space. Compositio Mathematica, Tome 78 (1991) no. 1, pp. 1-27. http://archive.numdam.org/item/CM_1991__78_1_1_0/
[1] Clifford modules, Topology 3, Suppl. 1 (1964), 3-38. | MR | Zbl
, and ,[2] Some new four-manifolds, Ann. of Math. 104 (1976), 61-72. | MR | Zbl
and ,[3] Sur les difféomorphismes de la sphére de dimension trois (Γ4 = 0). Lecture Notes No. 53, Springer-Verlag (1968). | Zbl
,[4] An exotic free involution on S4, Ann. of Math. 113 (1981), 357-365. | MR | Zbl
, and ,[5] The eta-invariant for even-dimensional Pinc-manifolds, Adv. in Math. 58 (1985), 243-284. | MR | Zbl
,[6] Involutions on manifolds, Springer-Verlag, Berlin (1971). | MR | Zbl
,[7] Four-dimensional topology, Moscow (1981) (Russian edition). | MR | Zbl
,[8] Seifert manifolds, plumbing, μ-invariant and orientation reversing maps, Lecture Notes No. 664, 163-196. | Zbl
, ,[9] Exotic structures on 4-manifolds detected by spectral invariants, Invent. Math. 94, 147-162 (1988). | MR | Zbl
,