Some results on unipotent orbital integrals
Compositio Mathematica, Tome 78 (1991) no. 1, pp. 37-78.
@article{CM_1991__78_1_37_0,
     author = {Assem, Magdy},
     title = {Some results on unipotent orbital integrals},
     journal = {Compositio Mathematica},
     pages = {37--78},
     publisher = {Kluwer Academic Publishers},
     volume = {78},
     number = {1},
     year = {1991},
     mrnumber = {1096126},
     zbl = {0737.22005},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1991__78_1_37_0/}
}
TY  - JOUR
AU  - Assem, Magdy
TI  - Some results on unipotent orbital integrals
JO  - Compositio Mathematica
PY  - 1991
SP  - 37
EP  - 78
VL  - 78
IS  - 1
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1991__78_1_37_0/
LA  - en
ID  - CM_1991__78_1_37_0
ER  - 
%0 Journal Article
%A Assem, Magdy
%T Some results on unipotent orbital integrals
%J Compositio Mathematica
%D 1991
%P 37-78
%V 78
%N 1
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1991__78_1_37_0/
%G en
%F CM_1991__78_1_37_0
Assem, Magdy. Some results on unipotent orbital integrals. Compositio Mathematica, Tome 78 (1991) no. 1, pp. 37-78. http://archive.numdam.org/item/CM_1991__78_1_37_0/

[1] M. Assem, Marching of certain unipotent orbital integrals on P-adic orthogonal groups, Ph.D. Thesis, University of Washington (1988).

[2] D. Barbasch and D. Vogan, Primitive ideals and orbital integrals in complex classical groups, Math. Ann., 259 (1982), pp. 153-199. | MR | Zbl

[3] R. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, John Wiley, 1985. | MR | Zbl

[4] L. Clozel and P. Delorme, Le Théorème de Paley-Wiener invariant pour les groupes die Lie reductifs (I), Inv. Math., 77 (1984), pp. 427-453. | MR | Zbl

[5] V. Ginsburg, Integrales sur le orbites nilpotentes et representations de groupes de Weyl, C. R. Acad. Sc., Paris (1983). | Zbl

[6] T. Hales, Unipotent classes induced from endoscopic groups, Mathematical Sciences Research Institute (September 1987).

[7] S. Helgason, Groups and Geometric Analysis, Academic Press, 1984. | MR | Zbl

[8] J. Igusa, Forms of Higher Degree, Tata Institute of Fundamental Research, Bombay, 1978. | MR

[9] K. Ireland and M. Rosen, A classical Introduction to Modern Number Theory, Graduate Texts in Mathematics, 58, Springer Verlag, 1982. | MR | Zbl

[10] R. Kottwitz, Tamagawa numbers, Ann. of Math., 127 (1986), pp. 629-646. | MR | Zbl

[11] R. Langlands, Les Débuts d'une Formule de Traces Stables, Publ. Math. de l'Univ. de Paris VII (13), 1983. | MR | Zbl

[12] G. Lusztig and J. Spaltenstein, Induced unipotent classes, J. London Math. Soc., 19 (1979), pp. 41-52. | MR | Zbl

[13] I. Macdonald, Some irreducible representations of Weyl groups, Bull. London Math. Soc., 4 (1972), pp. 148-150. | MR | Zbl

[14] I. Macdonald, Spherical Functions on a Group of p-adic Type, Ramanujan Institute Publications, Madras, 1971. | MR | Zbl

[15] I. Macdonald, The Poincaré series of a Coxeter group, Math. Ann., 199 (1972), pp. 161-174. | EuDML | MR | Zbl

[16] R. Rao, Orbital integrals in reductive groups, Ann. of Math., 96:3 (1972), pp. 503-510. | MR | Zbl

[17] D. Shelstad, L -indistinguishability for real groups, Math. Ann., 259 (1982), pp. 385-430. | EuDML | MR | Zbl

[18] J. Spaltenstein, Classes Unipotents et Sous-Groupes de Borel, Springer Lecture Notes in Math., 1982. | MR | Zbl

[19] T. Springer, A construction of representations of Weyl groups, Inv. Math., 44 (1978), pp. 279-293. | EuDML | MR | Zbl

[20] T. Springer and R. Steinberg, Conjugacy classes, seminar on algebraic groups and related finite groups, Lecture Notes in Math, 131. | Zbl