Algebraic realization of p-adically projective groups
Compositio Mathematica, Tome 79 (1991) no. 1, pp. 21-62.
@article{CM_1991__79_1_21_0,
     author = {Jarden, Moshe},
     title = {Algebraic realization of $p$-adically projective groups},
     journal = {Compositio Mathematica},
     pages = {21--62},
     publisher = {Kluwer Academic Publishers},
     volume = {79},
     number = {1},
     year = {1991},
     mrnumber = {1112279},
     zbl = {0737.12005},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1991__79_1_21_0/}
}
TY  - JOUR
AU  - Jarden, Moshe
TI  - Algebraic realization of $p$-adically projective groups
JO  - Compositio Mathematica
PY  - 1991
SP  - 21
EP  - 62
VL  - 79
IS  - 1
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1991__79_1_21_0/
LA  - en
ID  - CM_1991__79_1_21_0
ER  - 
%0 Journal Article
%A Jarden, Moshe
%T Algebraic realization of $p$-adically projective groups
%J Compositio Mathematica
%D 1991
%P 21-62
%V 79
%N 1
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1991__79_1_21_0/
%G en
%F CM_1991__79_1_21_0
Jarden, Moshe. Algebraic realization of $p$-adically projective groups. Compositio Mathematica, Tome 79 (1991) no. 1, pp. 21-62. http://archive.numdam.org/item/CM_1991__79_1_21_0/

[A] J. Ax, The elementary theory of finite fields, Ann. Math. 88 (1968), 239-271. | MR | Zbl

[BNW] E. Binz, J. Neukirch and G.H. Wenzel, A subgroup theorem for free products of profinite groups, J. Algebra 19 (1971), 104-109. | MR | Zbl

[BS] J.L. Bell And A.B. Slomson, Models and Ultraproducts, North-Holland/American Elsevier, Amsterdam/New York, 1974. | Zbl

[D] L P.D. v.d. Dries, Model theory of fields, Thesis, Utrecht, 1978.

[DR] L P.D. v.d. Dries and P. Ribenboim, An application of Tarski's principle to absolute Galois groups of function fields, Queen's Mathematical Preprint No. 1984-8.

[EJ] I. Efrat and M. Jarden, Free pseudo p-adically closed field of finite corank, J. Algebra 133 (1990), 132-150. | MR | Zbl

[F] M.D. Fried, Irreducibility results for separated variables equations, J. Pure and Applied Algebra 48 (1987), 9-22. | MR | Zbl

[FJ] M.D. Fried and M. Jarden, Field Arithmetic, Ergebnisse der Mathematik. III. 11, Springer, Heidelberg, 1986. | MR | Zbl

[G] W.-D. Geyer, Galois groups of intersections of local fields, Israel J. Math. 30 (1978), 382-396. | MR | Zbl

[GR] D. Gildenhuys and L. Ribes, A Kurosh subgroup theorem for free pro-C-products of pro-C-groups, Transactions of AMS 186 (1973), 309-329. | MR | Zbl

[Gr] C. Grob, Die Entscheidbarkeit der Theorie der maximalen pseudo p-adisch abgeschlossenen Körper, Dissertation, Konstanz, 1988. | Zbl

[H] D. Haran, On closed subgroups of free products of profinite groups, Proc. Lon. Math. Soc. (3) 55 (1987), 266-298. | MR | Zbl

[HJ1] D. Haran and M. Jarden, The absolute Galois group of a pseudo real closed field, Annali della Scuola Normale Superiore - Pisa, Serie IV, 12 (1985), 449-489. | Numdam | MR | Zbl

[HJ2] D. Haran and M. Jarden, Real free groups and the absolute Galois group of R(t), J. Pure Appl. Algebra 37 (1985), 155-165. | MR | Zbl

[HJ3] D. Haran and M. Jarden, The absolute Galois group of a pseudo real closed algebraic field, Pac. J. Math. 123 (1986), 55-69. | MR | Zbl

[HJ4] D. Haran and M. Jarden, The absolute Galois group of a pseudo p-adically closed field, J. für die reine und angewandte Math. 383 (1988), 147-206. | MR | Zbl

[HL] D. Haran and A. Lubotzky, Maximal abelian subgroups of free profinite groups, Mathematical proceeding of the Cambridge Philosophical Society 97 (1985), 51-55. | MR | Zbl

[HP] B. Heinemann And A. Prestel, Fields regularly closed with respect to finitely many valuations and orderings, Can. Math. Soc. Conf. Proc. 4 (1984), 297-336. | MR | Zbl

[HR] W. Herfort and L. Ribes, Torsion elements and centralizers in free products of profinite groups, J. für die reine und angewandte Math. 358 (1985), 155-161. | MR | Zbl

[J] M. Jarden, The algebraic nature of the elementary theory of PRC fields, manuscripta mathematicae 60 (1988), 463-475. | MR | Zbl

[JW] U. Jannsen und K. Wingberg, Die Struktur der absoluten Galoisgruppe p-adischer Zahlkörper, Inventiones mathematicae 70 (1982), 70-98. | MR | Zbl

[KN] W. Krull and J. Neukirch, Die Struktur der absoluten Galoisgruppe über dem Körper R(t), Math. Ann. 193 (1971), 197-209. | MR | Zbl

[L] S. Lang, Introduction to algebraic geometry, Interscience Publishers, New York, 1958. | MR | Zbl

[N1] J. Neukirch, Kennzeichnung der p-adischen und der endlichen algebraischen Zahlkörper, In. Math. 6 (1969), 296-314. | MR | Zbl

[N2] J. Neukirch, Freie Produkte pro-enlicher Gruppen und ihre Kohomologie, Arch. der. Math. 22 (1971), 337-357. | MR | Zbl

[P] A. Prestel, Pseudo real closed fields, Set theory and Model theory, Springer's Lecture Notes 872 (1981), 127-156, Springer. | MR | Zbl

[Po] F. Pop, Galoissche Kennzeichnung p-adisch abgeshlossener Körper, Dissertation, Heidelberg, 1987. | MR | Zbl

[PR] A. Prestel And P. Roquette, Formally p-adic fields, Lecture Notes in Mathematics 1050, Springer, Berlin, 1984. | MR | Zbl

[PZ] A. Prestel And M. Ziegler, Model theoretic methods in the theory of topological fields, J. für die reine und angewandte Math. 299/300 (1978), 318-341. | MR | Zbl

[R] L. Ribes, Introduction to profinite groups and Galois Cohomology, Queen's papers in Pure and Applied Maths 24, Queen's University, Kingston, 1970. | MR | Zbl

[Ri] P. Ribenboim, Théorie des valuations, Les Presses de l'Université de Montréal, Montréal, 1964. | MR | Zbl

[S] J.-P. Serre, Cohomologie Galoisienne, Lecture Notes in Maths. 5, Springer, Heidelberg, 1965. | MR | Zbl

[Sp] B. Schuppar, Elementare Aususagen zur Arithmetik und Galoistheorie von Funktionenkörpen, J. für die reine und angewandte Math. 313 (1980), 59-71. | MR | Zbl