@article{CM_1991__79_1_63_0, author = {N\'emethi, Andr\'as}, title = {The {Milnor} fiber and the zeta function of the singularities of type $f = P(h,g)$}, journal = {Compositio Mathematica}, pages = {63--97}, publisher = {Kluwer Academic Publishers}, volume = {79}, number = {1}, year = {1991}, mrnumber = {1112280}, zbl = {0724.32020}, language = {en}, url = {http://archive.numdam.org/item/CM_1991__79_1_63_0/} }
TY - JOUR AU - Némethi, András TI - The Milnor fiber and the zeta function of the singularities of type $f = P(h,g)$ JO - Compositio Mathematica PY - 1991 SP - 63 EP - 97 VL - 79 IS - 1 PB - Kluwer Academic Publishers UR - http://archive.numdam.org/item/CM_1991__79_1_63_0/ LA - en ID - CM_1991__79_1_63_0 ER -
Némethi, András. The Milnor fiber and the zeta function of the singularities of type $f = P(h,g)$. Compositio Mathematica, Tome 79 (1991) no. 1, pp. 63-97. http://archive.numdam.org/item/CM_1991__79_1_63_0/
[1] Le groupe de monodromie du deploiement des singularités isolées de courbes planes I, Math. Ann.(1975) 213, 1-32. | MR | Zbl
,[2] La fonction zeta d'une monodromie. Commentarii Mathematici Helvetici (1975) 50, 233-248. | MR | Zbl
,[3] Singularities of differentiable maps, Vols I and II, Birkhäuser, 1988. | Zbl
, and ,[4] Éléments de mathematiques, Livre II, Algèbre, Chap. 8. | Zbl
,[5] Critical points of functions on analytic varieties, Topology Vol. 27 No. 1, 57-90 (1988). | MR | Zbl
and ,[6] Le formalisme des cycles évanescents, SGA VII2, Exp. XIII, Lecture Notes in Math. 340, 82-115 (1973). | Zbl
,[7] Function gems defined on isolated hypersurface singularities, Compositio Math. 53 (1984), 245-258. | Numdam | MR | Zbl
,[8] Quasifaserungen und unendliche symmetrische producte, Ann. Math. 67 (1958). | MR | Zbl
and ,[9] Three-dimensional link theory and invariants of plane curve singularities. Ann. of Math. Studies, Princeton Univ. Press, 110 (1985). | MR | Zbl
and ,[10] Free differential calculus II, Math. Ann. 59(2), March (1954). | MR | Zbl
,[11] Intersection matrices for certain singularities of functions of two variables, Funk. Anal. Pril. 8(1) (1974) 11-15. | MR | Zbl
,[12] Dynkin diagrams of singularities of functions of two variables. Funk. Anal. Pril. 8(4) (1974) 23-30. | MR | Zbl
,[13] Local topological properties of complex algebraic sets, Sibirsk. Mat. Z. 15(4) (1974), 784-805. | MR | Zbl
,[14] Complex surfaces with a one dimensional set of singularities, Sibirsk. Mat. Z, 15(5) (1974), 1061-1082. | MR | Zbl
,[15] On the connectivity of the Milnor fibre of a holomorphic function at a critical point, Proc. 1973 Tokyo Manifold Confer., 131-136. | MR | Zbl
and ,[16] Calcul du nombre de cycles évanouissants d'une hypersurface complexe, Ann. Inst. Fourier (Grenoble) 23 (1973) 261-270. | Numdam | MR | Zbl
,[17] Le monodromie n'a pas de points fixes, J. Fac. Sci. Univ. Tokyo Sec. IA. Math, 22 (1975), 409-427. | MR | Zbl
,[18] Ensembles analytiques complexes avec lieu singulier de dimension un (d'apres I.N. Iomdin). Séminaire sur les singularités, Publ. Math. Univ. Paris VII, p. 87-95 (1980).
,[19] The local π1 of the complement of a hypersurface with normal crossings in codimension 1 is abelian. Arkiv for Mathematik 22(1) (1984) 1-24. | Zbl
and ,[20] Isolated singular points on complete intersections, London Math. Soc. Lect. Note Series 77, Cambridge University Press, 1984. | MR | Zbl
,[21] Singular points of complex hypersurfaces, Annals of Math. Studies of Math. Studies, 61, Princeton Univ. Press, 1968. | MR | Zbl
,[22] Isolated singularities defined by weighted homogeneous polynomials, Topology, Vol. 9. pp. 385-393. | MR | Zbl
and ,[23] Hypersurface singularities and resolutions of Jacobi modules. Thesis Rijksuniversiteit Utrecht, 1985. | Zbl
,[24] Finite determinacy of functions with non-isolated singularities, Proc. London Math. Soc. (3), 57 (1988), 357-382. | MR | Zbl
,[25] Milnor fiberings and their characteristic maps, Proc. Intern. Conf. on Manifolds and Related Topics in Topology, Tokyo, 1973, 145-150. | MR | Zbl
,[26] Topological series of isolated plane curve singularities, Preprint Rijksuniversiteit Utrecht, 1988. | MR
:[27] Local fields, Graduate texts in math. 67 (1979). | MR | Zbl
,[28] Classification and deformation of singularities, Acad. Service, Vinkeveen, 1974. | MR | Zbl
,[29] Isolated line singularities, Proc. of Symp. in Pure Math., Vol. 40 (1983), Part 2, 485-496. | MR | Zbl
,[30] Hypersurface with singular locus a plane curve and transversal type A 1. Preprint 406, Rijksuniversiteit Utrecht (1986). | MR
,[31] Singularities with critical locus a 1-dimensional complete intersection and transversal type A1, Topology and its applications 27 (1987), 51-73. | MR | Zbl
,[32] Quasihomogeneous singularities with transversal type A1, Preprint 452, Rijksunversiteit Utrecht (1987). | MR
,[33] The monodromy of a series of hypersurface singularities, Preprint University Utrecht (1988). | MR
,[34] Algebraic Topology, McGraw-Hill, New York, 1966. | MR | Zbl
,[35] Group theory I, Grundlehren der mathematischen Wissenschaften 247. | Zbl
,[36] Cycles evanescents, sections planes et conditions de Whitney, Astérisque 7 et8, 1973, 285-362. | MR | Zbl
,[37] Non-isolated hypersurface singularities, Thesis, Nijmegen, 1988.
,[38] Zeta function of monodromy and Newton's diagram. Invent. Math.(1976), 37, 253-262. | MR | Zbl
,[39] Sur une classe de singularités non-isolées. To appear in Rev. Roum. Math. Pure Appl. | MR | Zbl
,[40] On the problem of existence of algebraic functions of two variables possessing a given branch curve. Amer. J. Math. 51 (1929). | JFM | MR
,[41] Singularity theory and an introduction to catastrophe theory, Universitext, Springer Verlag (1976). | MR | Zbl
,