@article{CM_1991__80_3_257_0, author = {Altmann, Klaus}, title = {Equisingular deformations below the {Newton} boundary}, journal = {Compositio Mathematica}, pages = {257--283}, publisher = {Kluwer Academic Publishers}, volume = {80}, number = {3}, year = {1991}, mrnumber = {1134256}, zbl = {0751.14022}, language = {en}, url = {http://archive.numdam.org/item/CM_1991__80_3_257_0/} }
Altmann, Klaus. Equisingular deformations below the Newton boundary. Compositio Mathematica, Tome 80 (1991) no. 3, pp. 257-283. http://archive.numdam.org/item/CM_1991__80_3_257_0/
[A1] Equisingular deformations of isolated 2-dimensional hypersurface singularities. Invent. Math. 88, 619-634 (1987). | MR | Zbl
:[Ha] Algebraic geometry. Graduate Texts in Mathematics, vol. 52. Berlin, Heidelberg, New York: Springer 1977. | MR | Zbl
:[Ka] Equimultiplicity of deformations of constant Milnor number. In: Proceedings of the Conference on Algebraic Geometry, Berlin 1985. Teubner-Texte zur Mathematik, vol. 92, Leipzig: Teubner 1986. | MR | Zbl
:[O] On the Resolution of the Hypersurface Singularities. In: Advanced Studies in Pure Mathematics 8, 405-436 (1986) (Complex Analytic Singularities). | Zbl
:[Va] Zeta-function of monodromy and Newton's diagram. Invent. Math. 37, 253-262 (1976). | MR | Zbl
, a.n.:[Wa1] Equisingular deformations of plane algebroid curves. Trans. Am. Math. Soc. 193, 143-170 (1974). | MR | Zbl
:[Wa2] Equisingular deformations of normal surface singularities, I. Ann. Math. 104, 325-356 (1976). | MR | Zbl
: