Limitations to the equi-distribution of primes III
Compositio Mathematica, Tome 81 (1992) no. 1, pp. 19-32.
@article{CM_1992__81_1_19_0,
     author = {Friedlander, John and Granville, Andrew},
     title = {Limitations to the equi-distribution of primes {III}},
     journal = {Compositio Mathematica},
     pages = {19--32},
     publisher = {Kluwer Academic Publishers},
     volume = {81},
     number = {1},
     year = {1992},
     mrnumber = {1145606},
     zbl = {0743.11048},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1992__81_1_19_0/}
}
TY  - JOUR
AU  - Friedlander, John
AU  - Granville, Andrew
TI  - Limitations to the equi-distribution of primes III
JO  - Compositio Mathematica
PY  - 1992
SP  - 19
EP  - 32
VL  - 81
IS  - 1
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1992__81_1_19_0/
LA  - en
ID  - CM_1992__81_1_19_0
ER  - 
%0 Journal Article
%A Friedlander, John
%A Granville, Andrew
%T Limitations to the equi-distribution of primes III
%J Compositio Mathematica
%D 1992
%P 19-32
%V 81
%N 1
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1992__81_1_19_0/
%G en
%F CM_1992__81_1_19_0
Friedlander, John; Granville, Andrew. Limitations to the equi-distribution of primes III. Compositio Mathematica, Tome 81 (1992) no. 1, pp. 19-32. http://archive.numdam.org/item/CM_1992__81_1_19_0/

[BFI] E. Bombieri, J.B. Friedlander, and H. Iwaniec: Primes in arithmetic progressions to large moduli, Acta Math. 156 (1986), 203-251II, Math. Ann. 277 (1987), 361-393; III, J. Amer. Math. Soc. 2 (1989), 215-224. | MR | Zbl

[Bu] A.A. Buchstab: On an asymptotic estimate of the number of numbers of an arithmetic progression which are not divisible by relatively small prime numbers, Mat. Sb. 28 (70) (1951), 165-184 (in Russian). | MR

[Da] H. Davenport: Multiplicative Number Theory (2nd ed.), Springer-Verlag, New York (1980). | MR | Zbl

[FG] J. Friedlander and A. Granville: Limitations to the equi-distribution of primes I, Ann. Math. 129 (1989), 363-382. | MR | Zbl

[FGHM] J. Friedlander, A. Granville, A. Hildebrand, and H. Maier: Oscillation theorems for primes in arithmetic progressions and for sifting functions, to appear in J. Amer. Math. Soc. | MR | Zbl

[Ga] P.X. Gallagher: A large sieve density estimate near σ = 1, Invent. Math. 11 (1970), 329-339. | Zbl

[HRi] H. Halberstam and H.-E. Richert: Sieve Methods, L.M.S. Monographs, Academic Press, London (1974). | MR | Zbl

[HRa] G.H. Hardy and S. Ramanujan: The normal number of prime factors of a number n, Quart. J. Math. 48 (1917), 76-92. | JFM

[HM] A. Hildebrand and H. Maier: Irregularities in the distribution of primes in short intervals, J. Reine Angew. Math. 397 (1989), 162-193. | MR | Zbl

[Ma] H. Maier: Primes in short intervals, Michigan Math. J. 32 (1985), 221-225. | MR | Zbl

[Mo] H.L. Montgomery: Topics in Multiplicative Number Theory, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin (1971). | MR | Zbl

[Se] A. Selberg: On the normal density of primes in small intervals and the difference between consecutive primes, Arch. Math. Naturvid. 47 (1943), 87-105. | MR | Zbl