
COMPOSITIO MATHEMATICA

JOHAN A. C. KOLK

V. S. VARADARAJAN
Lorentz invariant distributions supported
on the forward light cone
Compositio Mathematica, tome 81, no 1 (1992), p. 61-106
<http://www.numdam.org/item?id=CM_1992__81_1_61_0>

© Foundation Compositio Mathematica, 1992, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1992__81_1_61_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


61

Lorentz invariant distributions supported on the forward light
cone

JOHAN A.C. KOLK1 and V.S. VARADARAJAN2,*

Compositio Mathematica 81: 61-106, 1992.
(Ç) 1992 Kluwer Academic Publishers. Printed in the Netherlands.

1 Mathematisch Instituut, Rijksuniversiteit Utrecht, The Netherlands; 2Department of Mathematics,
University of California . Los Angeles, U.S.A.

Received 12 June 1990; accepted 11 March 1991

1. Introduction

From the physical point of view, for instance in the quantum theory of the
electromagnetic field, it is of interest to give, for any finite-dimensional module
U for the connected Lorentz group G, a description of the space J( U) of all the
U-valued distributions on (the dual of the) Minkowski space-time that are
invariant under G and supported on the closed forward light cone, see [2].
Lorentz invariant distributions have of course been studied in depth, not only
on physical space-time but on the more general spaces Rm’" with a quadratic
form of signature (m, n), see [10], [12], [13], the work of Gârding and J.E. Roos
in [3], [11], [16]. However the case of the vector-valued distributions as well as
the situation when their supports are required to be in the forward (as opposed
to the full) light cone have not received the emphasis they deserve in the
mathematical literature. Our aim here is to supplement these papers with a
consideration of these two aspects. We restrict ourselves to the case of signature
( 1, n).
We shall now briefly explain some of the main ideas of the paper. For this

purpose it is enough to consider scalar distributions. In his seminal paper [14]
M. Riesz studies the wave operator D and its complex powers. For Riesz, as well
as for Gelfand and Shilov who took this up later, the study of invariant
distributions associated to the quadratic form co was essentially a question of the
analytic continuation of the powers WS (s E C). The description of all invariant
distributions with or without support conditions, did not emerge as an objective
until the works of Methée and others referred to above focussed attention on

this goal. Finally, it was Harish-Chandra who realized (in a different context) the
fruitfulness of regarding the space of invariant distributions as a module for the
algebra of polynomial differential operators, especially for the Lie algebra a
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gratitude to the Mathematical Institute of the State University at Utrecht, where he spent a part of
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isomorphic to sl(2, C), with basis 0, cv, and their commutator [D, (0], which is
essentially the Euler vector field. This idea is also our starting point and one of
the main results is a complete description of this module structure. Rallis and
Schiffmann in [11] have studied related modules, but as modules for 0 only.
The closed forward light cone supports two invariant measures: b, the Dirac

measure at the origin, and (Xri, the invariant measure on the open forward light
cone. One may naively expect that all invariant distributions supported by the
closed forward light cone may be obtained as linear combinations of the n’ô and
~k03B1+0(k  0). This is in fact true if d, the dimension of the underlying space, is
odd. But when d is even this is no longer the case. Then the distribution
~d-2/203B1+0 becomes a multiple of b - a circumstance compatible with the
Huygens principle - and so one cannot gain access to those invariant

distributions which are nonzero away from the origin and have a transversal

order at the points of the forward cone that is  d - 2 2. Thus, to generate all
invariant distributions one has to start with an invariant distribution 03C4 of

transversal order 2 ; the ones with higher transversal order are then obtained
from the Ek T, and the ones with lower transversal order are obtained from the
(Okr. One also sees from this description that the module of invariant distribu-
tions will have a much more complicated structure when d is even, and that in
particular it will not be cyclic for C alone.
The construction of i is therefore one of the central concerns of this paper. For

use in applications in physics it is also important to obtain an explicit space-time
expression for i. This is done in Section 7.2 where the formula for i on the space
go of Schwartz functions vanishing at the origin is calculated. The extension of i
to the full Schwartz space Y is not unique; however, all extensions are invariant
and they are determined by the value at one element of g outside go.
The method we use for constructing i is not the only one possible. The theory

of Riesz distributions can be used for this purpose, as we discuss in greater detail
in [8]. For instance, if (RJ is the Riesz family (R, is the restriction to the open
solid forward light cone of the power cos with a suitable normalization), it turns
out that, up to a constant depending on d, the distribution r is equal to

Also the principal results on J(C) can now be obtained, although at various
stages in the arguments, one has to make use of a generalization to the one-sided
context of the theory of Methée. Therefore we have preferred to develop in this
paper the entire theory in a direct and elementary manner, independent of the
rather sophisticated Methée calculus.
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This work was inspired by questions posed to VSV by a group of physicists at
the Istituto Nazionale di Fisica Nucleare in Genova, consisting of Professors G.
Cassinelli, G. Olivieri and P. Truini. We are grateful to Professor J.J. Duister-
maat for stimulating discussions on the results of this paper.

2. Notations and statement of main results

We set

We work in R’,", for n  3, with coordinates (p0, p1,... , Pn) and fundamental
quadratic form

where p03BC = + p, according as y is 0 or &#x3E; 0. We write G for SO(1, n)°, the
connected component containing the identity of the subgroup of GL(R1°") of
elements fixing 03C9. We have: g = (aij) ~ G if and only if g fixes w, det(g) = 1, and
aoo &#x3E; 0 ( 1 actually). Moreover Lie(G) = g is its Lie algebra, acting on R1,n via
the vector fields

Here ,u, v = 1,..., n, for M ~ v, and a,, = êlêp,. The forward light cone is

and its closure Cl(Xô ) = X+0 ~ {0}.
G operates naturally on the usual space of test functions C~c(R1,n) (resp.

Y(R1,n)) and hence on the dual space of distributions (resp. tempered distribu-
tions). More generally let U be a finite-dimensional G-module. A U-valued

distribution (resp. tempered distribution) is a continuous map T: C~c(R1,n) ~ U
(resp. Y(R1,n) ~ U). G acts on these by

T is invariant if g - T = T, for all g E G. For any T, supp(T) denotes its support.
Our main concern is with

J(U) = {T|T an invariant distribution with supp(T) c Cl(X+0)}.
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Many computations involving the distributions in J(U) only exploit their
behavior under multiplication by the quadratic form cv and application of the
wave operator

Clearly it is also natural to consider along with these the commutator of (O and
D, cf. [5]; up to constants it is equal to the radial or Euler vector field

which detects the homogeneity properties of the distributions. These three
operators generate a 3-dimensional simple subalgebra a of the algebra of
polynomial differential operators. In fact, for any polynomial h let M(h) be the
operator of multiplication by h. Then, if we write

we have the commutation rules

so that

is a three-dimensional simple subalgebra of the algebra of polynomial dif-

ferential operators on R1,n. It is clear that a operates on J(U) so that J(U) is an
a-module; and we shall give a complete description of J(U) as a module for a.

First we come to the modules U that actually do occur in this set-up. Let Y be
the algebra of polynomial functions on R 1 ,no We have a natural action of G on Y.
An element u ~ Y is said to be harmonic if ~u = 0. We write Jf for the (graded)
G-submodule of Y of harmonic polynomials and Hj for its subspace of
homogeneous elements of degree j. These are stable and irreducible under G. If
U is an irreducible finite-dimensional G-module, then J(U) is nonzero if and
only if U ~ Jfj.
The closed forward cone is stratified by two orbits: the vertex and the open

forward cone. Accordingly we have an injection of the a-module K(U) of the
Lorentz invariant distributions supported by the vertex into J(U). Let J( U) be
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the space of germs of Lorentz invariant distributions defined on invariant open

neighborhoods of X ô with supports contained in X t. Then restriction of
distributions supported on Cl(X+0) to open invariant neighborhoods of xt gives
a mapping J(U) ~ J(U). These maps lead to the sequence

It is important to establish at the outset that (*) is exact. Although K( U) and
J(U) are relatively simple to describe as a-modules, the exact sequence (*) does
not split when d is even (it does, if d is odd). The analysis of (*) is thus a basic
issue when d is even. We shall now proceed to a more detailed discussion of this
point.
We recall the Verma modules V(À) (À E C), cf. § 3 infra. If 03BB, = i is an integer  0,

then F(i) denotes the irreducible finite-dimensional module of dimension i + 1,
and we have the exact sequence

Next we consider the module M(i) which may be characterized as the module,
unique up to isomorphism, for which there is a nonsplitting exact sequence

A precise formulation of the results above is now that always

and that

When d is even the submodule F(d 2 - 2 corresponds of course to the linear
span of the elements ~k03B1+0 0  k  d 2- 2 .

In order to study (*), we consider, for any integer i  0, modules W for which
there is a nonsplitting exact sequence
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The moduli space for all such modules W is P 1 (C), and for every value of the
modulus we construct W as a quotient of the universal enveloping algebra of a
by an explicitly given ideal.

It therefore remains to verify the exactness of (*) as well as to determine the
exact parameter that corresponds to the module under consideration. For both
questions the essential case is that of U ~ C. Note that 03C9:R1,nB{0} ~ R is a

surjective submersion, therefore the pullback 03C9*(03B4(d-2/2)0) of the d 2-derivative
of the Dirac measure ô. at 0 in R gives a distribution on R1,nB{0} homogeneous
of degree - d. The surjectivity of J(C) ~ J(C) now comes down to proving that
03C9*((03B4(d-2/2)0) can be extended to a Lorentz invariant tempered distribution
supported on Cl(X+0). Such tempered extensions exist and they are auto-
matically Lorentz invariant. The determination of the modulus for the general
case J(U) is a delicate calculation.
Our main theorem, which summarizes the results above, is as follows.

2.1. THEOREM. As usual d = n + 1.

(a) For any integer i  0 the set of isomorphism classes of a-modules W
admitting a nonsplitting exact sequence (W, i) is in natural bijection with
P1(C) = C ~ {~}. Let W(i : y) be the module corresponding to y E P1(C).

(b) If U is an irreducible finite-dimensional G-module, then J(U) is nonzero if
and only if U ~ Hj. I n this case,

The invariant y is a subtle one. However there is a qualitative difference
between the module W(i : oo) and the modules W(i : y) with y finite, namely,
W(i : oo) is a weight module while the W(i : y) with y finite are not so; the action of
H on these involves a two-step nilpotent corresponding to each eigenvalue of
multiplicity 2.

In the description of the J(U) there is a noticeable contrast between the case of
odd or even dimension d ; this is directly related to the Huygens principle. If d is
odd there exist no invariant distributions T supported by the forward light cone
that are fundamental solutions of the wave operator, i.e. with UT = ô. In fact, in
this case the Dirac measure at 0 is a highest weight vector in the Verma module
occurring as the second summand; and therefore it cannot be in the image of ~.

It would be interesting to know whether there exist geometric realizations for
the modules W(i : y) for finite values of y different from 1 2(i+1), as spaces of
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vector-valued distributions or variations thereof. And furthermore, can one

explain the isomorphisms between the modules having the same value of

3. Construction of the modules W( j : y)

In this section we shall give the construction of the modules W( j : y). We
consider modules for g = sI(2, C) with the commutation rules

For any module V and any c E C, V[c] denotes the generalized eigenspace of H
for the eigenvalue c, namely the space of all v E v such that (H - c)’v = 0, for
some k.

Let us write V(03BB) for the Verma module with basis (v03BB, VÀ-2, ...) such that

We next introduce the modules M( j), with j an integer  0. Let us consider
modules M for which there is a nonsplitting exact sequence

Then H acts semisimply on M with simple spectrum {j, j - 2,....}. It is obvious
that

For any integer j  0 one can construct such a module M(j) as follows. The
module M(j) has a basis {m(k)}k=j,j-2,... such that

Conversely any M satisfying (E) and nonsplit is isomorphic to M( j); to see this
we observe that X is surjective on M and so we can find 0 ~ m(k) E M[k],
X m(k) = m(k + 2) (m(j + 2) = 0); the commutation rules then lead to the above
action of Y
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3.1. We shall next consider modules W admitting an exact sequence

PROPOSITION. Let w ~ W[- j - 2] map to a nonzero element of M( j). Then
YX w and (H + j + 2)w are independent of the choice of w; and

Proof. The first assertion is clear since, for any u E V(-j - 2)[ - j - 2], X u = 0
and (H + j + 2)u = 0. Also the implication =&#x3E; is obvious. Suppose conversely
that YXw = 0 and (H + j + 2)w = 0. Let Wk = Xkw, 0  k  j + 1. Since wj+1
maps to Xj+1 m ~ 0 where m is the image of w, it must be nonzero. Let

where  ... &#x3E; denotes linear span. We leave it to the reader to verify that L is a
submodule. It is obvious that L ~ M(j) and W = V(-j - 2) ~ L.

3.2. DEFINITION. Suppose that (3.1) does not split. Since (H + j + 2)w and
YX w map to 0 in M( j), they both lie in V(-j - 2)[ -j - 2] and so satisfy a
nontrivial relation 03B1 YXw - 03B2(H + j + 2)w = 0. Hence we have a unique point

03B3 = 03B2 03B1 ~P1(C) = C ~ {~}. It is obvious that 03B3 = 03B3(W) is an invariant of W. Our
aim is to show that all points of P1(C) arise in this manner and that y determines
W uniquely. We write W(j : 03B3) for any W for which 03B3(W) = y.

It is clear that the spectrum of H in W is {j,j - 2,...}; the eigenvalues
j, j - 2,..., - j are simple and the others are double.

LEMMA. Let y = y(W). If y is finite, W is not a weight module; and for any r  1,
H + j + 2r is a nonzero nilpotent on W[- j - 2r]. If y = oc, then W is a weight
module. In either case, w generates W Finally, if y is finite, and 1  r  j + 1,

Proof. If y is finite, we have we W[- j - 2], and (H + j + 2)w ~ 0, proving
that H + j + 2 is a nonzero nilpotent on W[- j - 2]. Furthermore, for any
k  1, X is a bijection of W[- j - 2(k + 1)] with W[- j - 2k] taking H - 2 to H.
This implies, by induction on k, that H + j + 2k is nonzero nilpotent on
W[- j - 2k] for all k. In either case let W’ = U(g) · w, where U(g) is the universal
enveloping algebra of g. It is clear that W’ maps onto M( j). So to prove that
W’ = W we need to verify that W’ contains ker( W ~ M(j)). If y is finite and
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v = (H + j + 2)w, then v ~ 0, (H + j + 2)v = 0, and v maps to zero in M( j), so
that v generates ker(W - M(j)). If y = oo, we take v = YX w; then again v ~ 0
and maps to 0 in M(j) so that it generates ker( W ~ M(j)). We prove the last
assertion of the lemma by induction on r. This is clear for r = 1. Let r &#x3E; 1 and

assume it for lower values of r. Now

therefore we get, if we remember that (H + j + 2)2W = 0,

3.3. We write « ... » for the ideal generated by - - .

LEMMA. Let U(g) be the universal enveloping algebra of g. Then

where

Proof If 0 ~ u ~ M(j)[- j - 2], the map a ~ a·u (a E U(g)) gives an exact
sequence U(g)/K(j) ~ M(j) ~ 0. The elements Y"X’, for r  0, s  j + 1 span
U(g) mod K( j). On the other hand, if r  1 and s  1,

So Yr, for r  0, and X S, for 1  s  j + 1, span U(g) mod K( j). The weights of
Y" and X S are respectively - j - 2 - 2r and - j - 2 + 2s. This shows that the
spectrum of H on U(g)/K(j) is simple and is contained in {j,j - 2...}, and, hence,
that U(g)/K(j) ~ M(j).

3.4. We now consider the W( j : y). We treat first the case of finite y. The vector w
is as in Section 3.1. For any integer j  0 and y E C let
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Let

LEMMA. I( j : y)w = 0 and 03932j E I( j : y). In particular F? = 0 on W( j : y).

Proof The first relation is obvious. Since 0393j ~ (H - j + 403B3)(H + j + 2)
mod 1( j : y) we get rJ == 0 mod 1( j : y), proving the second relation.
3.5. LEMMA. dim(U(g)/I(j: y))[ - j - 2] = 2.

Proof. Let us write 7 for 1( j : y), W for U(g)/I, and define

Now YrXs(H + j + 2)t, for r, s, t  0, form a basis for U(g) and it is clear that the
subfamily with r  0 and (s, t) satisfying one of: (a) s  j + 2; (b) t  2; (c) s  1,
t  1, span l’. Hence YrXs, for r  0, 0  s  j + 1, and yr(H + j + 2), for
r  0, form a basis for U(g) mod l’. The weights of these are, respectively,
- j - 2 + 2s - 2r and - j - 2 - 2r, so that if W’ = U(g)/l’, and a ~ a’ is the

natural map U(g) ~ W’, then W’[- j - 2] has the basis u’, vs, for 0  s  j + 1,
where u = H + j + 2 and vs = YSX S. Now I’ c I and I = l’ +

U(g)(YX - 03B3(H + j + 2)). Hence W = W’/W" where W" is the submodule of W’

generated by (YX - y(H + j + 2))’ which lies in W’[- j - 2]. But W"[- j - 2] is
spanned by the elements a · (YX - y(H + j + 2))’ where a is of the weight 0 for the
adjoint representation, i.e., a commutes with H. Now the centralizer of H in U(g)
is the algebra generated by H and YX and is therefore abelian. Hence,
W"[- j - 2] is L(W’[- j - 2]) where L is the endomorphism of W’ which is
induced by left multiplication by YX - y(H + j + 2) on U(g). Hence,

But a simple calculation shows that

So for the kernel ic and the range p of L on W’[- j - 2] we have

where (...) denotes linear span. The vectors determining p are linearly
independent, so that K = ~u’, v’j+1~ and the dimension of p is j + 1. This proves
that W[- j - 2] = W’[- j - 2]/03C1 ~ C2.
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3.6. Since I(j: y) c K( j), we now may introduce the module V’ = K( j)/I( j : y).

LEMMA. We have V’ ~ V(-j - 2) and the sequence

is exact and nonsplitting. In particular, for W = U(g)/I(j : y) we have y(W) = y.
Proof. We know YX’ (r  0, s  j + 1), Y’(H + j + 2) (r , 0) span U(g)

mod I(j:03B3). But if r  1, s  1,

Hence,

These have weights - j - 2 + 2s, - j - 2 - 2r, respectively. So the spectrum of H
on W is contained in {j, j - 2,...} with the eigenvalues of multiplicity  1 or  2
according as they are  - j or  - j - 2. Hence, the spectrum of H on V’ is
simple and contained in {- j - 2, - j - 4,...}. By 3.5 we know that - j - 2 is an
eigenvalue. Hence, - j - 2 is the highest weight of V’, showing that

V’ ~ V( - j - 2). On the other hand, H + j + 2 ft I( j : y) as otherwise we would
have K(j) c I( j : y) c K( j), giving V’ = 0. We may therefore take w to be the
image of H + j + 2 in W and find that y( W) = y. ·

3.7. We now take up the case y = oo. We set

LEMMA. dim(U(g)/I( j : oo))[- j - 2] = 2.

Proof. Write

and a’ for the image in W’ of a E U(g). Let W" = U(g)·(03932j)’. Then

yrxs(H + j + 2Y, for r, s, t  0, form a basis for U(g) and the subfamily with
either ,s  j + 2 or t  1 span l’. Hence, YrXs (r  0, 0  s  j + 1) form a basis of
U(g) mod l’. In particular, Vs = (Y’X’)’ (0  s  j + 1) form a basis of

W[- j - 2J. Since 1 j is m the center of U(g) we have W"’ = 03932j. W’ so that
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A simple calculation shows that

from which it follows easily that (restricted to W’[ - j - 2]) ker(03932j) has

dimension 2 and that W’[ - j - 2] = ker(03932j) ~ im(03932j).
3.8. As I(j:~) ~ K(j) we are allowed to introduce the module V’ =

is a nonsplitting exact sequence. In particular, y(W) = oo.
Proof. Write 1 = l(j: (0). The images Vrs of YrXs in U(g)/I for r  0 and

0  s  j + 1 span W. An easy calculation shows that, with yj = rj/4,

and, hence, that for suitable constants ars, brs,

It follows that for 1  s  j and constants crs we have

Thus vro and vr(j+1) span m and their weights are respectively - j - 2 - 2r and
j - 2r. Consequently, the spectrum of H in V’ is simple and contained in
{- j - 2, - j - 4, ...}. As - j - 2 is an eigenvalue by 3.7, it follows as before that
V’ ~ V(- j - 2). If w is the image of 1 in W, we must have YX w ~ 0; for,
otherwise, YX E I which would imply that K(j) ~ I ~ K(j) so that V’ would be
0. Since (H + j + 2)w = 0, we have 03B3(W) = ~.

3.9. THEOREM. For each y E P1(C) there is exactly one W( j : y) up to isomor-
phism. It is a weight module for y oc while for finite y the action of H + j + 2k on
W(j:03B3)[-j-2k] for each k  1 is a nonzero nilpotent. ln either case, if
w ~ W(j:03B3)[-j-2] maps to a nonzero element in M(j), there is a unique
isomorphism of W( j : y) with U(g)/I(j: y) that takes w to the image of 1.

Proof. Let W be such that (3.1 ) is exact and nonsplitting and let y( W) = y. If J
is the annihilator of w in U(g), it is direct that 1( j : y) c J. Hence there is a unique
surjective homomorphism U(g)/I(j: y) ~ W that takes the image of 1 to w. This
must be an isomorphism since the multiplicities of the eigenvalues of H are the
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same for both modules. The remaining statements are clear. Note that this
proves Theorem 2.1(a)

3.10. The modules W(j:03B3) do not seem to have been encountered before in
representation theory; however, the modules W( j : oo) are the same as the
modules T discussed in [18, p. 185].

3.11. We shall now give another description of W( j : y). Let W be the category of
modules V such that:

(1) v = ~c~C V[c], where the V[c] are the generalized weight spaces for H;
(2) V[c] ~ 0, only for c ~ Z, and finite-dimensional for all c.

As before let

and for any V ~ B and integer c  0, let Vc be the maximal subspace of V on
which 0393 - c(c + 2) is nilpotent. The n are submodules and V = ~ Vc. We write
E, for the projections V ~ Vc. The functor 03B2j, for integers j  0, is then defined
by

It is clear that this is a covariant functor which is exact, that is, takes exact

sequences to exact sequences. Our aim is to prove the following theorem whose
proof requires some preparation.

THEOREM. We have

3.12. We write {fj, fj-2,..., f- il for a basis of F(j) with fk of weight k and
Yfk = fk-2 (Yf - k = 0). The following proposition is the special case, for

g = sI(2, C), of [1, Lemma 5].

PROPOSITION. Let c E C. Then V(c) 0 F(j) has a flag of submodules whose
successive quotients are

More precisely, let v(c) be a nonzero highest weight vector of V(c) and let
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where D = C [ Y] c U(g). Then :

(1) the Lr are submodules and 0 c Lo c... c Li = V(c) 0 F( j);
(2) Lr/Lr-1 ~ V(c + j - 2r);
(3) The image of v(c) O fj- 2r ~ Lr lies in V(c+j-2r)[c+j-2r] and is not zero.

3.13. DEFINITION. Suppose W ~ B has a flag of submanifolds

Assume that for all m = 0,..., p, we have that (Wm/Wm-1)c(m) =
Wm/Wm-1, for some c(m) E C; that is, r has a single eigenvalue c(m)(c(m) + 2) on
Wm/Wm-l’ For a fixed r, 0  r  p, the number c(r) or Wr/Wr-1 is said to be

isolated if c(m)(c(m)+2) ~ c(r)(c(r) + 2) for m ~ r.

3.14. Let the context be as above and let 03C0 be the natural map

LEMMA

(1) Suppose x ~ Wm and 03C0x ~ 0, then Ec(m)x ~ 0; in fact,

(2) Suppose further that Wr/Wr-1 is isolated. Then W’ := Ec(r)W is contained in
W and Wr = W’ ~ Wr-1.

Proof The assertion (1) follows from the commutativity of the diagram

For (2) we write W" = (I - Ec(r))(W). Then W = W’ ~ W" so that W"c(r) = 0. For
any m,

Taking m = r we see that W ~ W" = Wr-1 n W". Hence,


