@article{CM_1992__81_2_223_0, author = {Kurihara, Masato}, title = {Some remarks on conjectures about cyclotomic fields and $K$-groups of $\mathbf {Z}$}, journal = {Compositio Mathematica}, pages = {223--236}, publisher = {Kluwer Academic Publishers}, volume = {81}, number = {2}, year = {1992}, mrnumber = {1145807}, zbl = {0747.11055}, language = {en}, url = {http://archive.numdam.org/item/CM_1992__81_2_223_0/} }
TY - JOUR AU - Kurihara, Masato TI - Some remarks on conjectures about cyclotomic fields and $K$-groups of $\mathbf {Z}$ JO - Compositio Mathematica PY - 1992 SP - 223 EP - 236 VL - 81 IS - 2 PB - Kluwer Academic Publishers UR - http://archive.numdam.org/item/CM_1992__81_2_223_0/ LA - en ID - CM_1992__81_2_223_0 ER -
Kurihara, Masato. Some remarks on conjectures about cyclotomic fields and $K$-groups of $\mathbf {Z}$. Compositio Mathematica, Tome 81 (1992) no. 2, pp. 223-236. http://archive.numdam.org/item/CM_1992__81_2_223_0/
[1] Polylogarithm and cyclotomic elements, preprint (1990).
:[2] L-functions and Tamagawa numbers of motives, in The Grothendieck Festschrift Vol I, Progress in Math. Vol. 86, Birkhäuser (1990), 333-400. | MR | Zbl
and :[3] Anderson-Ihara theory: Gauss sums and circular units, in Algebraic Number Theory (in honor of K. Iwasawa), Adv. Studies in Pure Math. 17 (1989), 55-72. | MR | Zbl
:[4] Le groupe fondamental de la droite projective moins trois points, in Galois groups over Q, Publ. MSRI, no. 16, Springer-Verlag (1989), 79-298. | MR | Zbl
:[5] Algebraic and etale K-theory, Trans, AMS 292(1) (1985), 247-280. | MR | Zbl
and :[6] On the Jacobian variety of some algebraic curves, Comp. Math. 42 (1981), 345-359. | Numdam | MR | Zbl
:[7] Profinite braid groups, Galois representations and complex multiplications, Ann. Math. 123 (1986), 43-106. | MR | Zbl
:[8] On some properties of the universal power series for Jacobi sums, Adv. Studies in Pure Math. 12 (1987), 65-86. | MR | Zbl
, , and :[9] A class number formula for cyclotomic fields, Ann. Math. 76 (1962), 171-179. | MR | Zbl
:[10] Euler systems, to appear in The Grothendieck Festschrift Vol. II. | MR | Zbl
:[11] On the torsion in K4(Z) and K5(Z) with Addendum by C. Soulé, Duke Math. 45 (1978), 101-132. | Zbl
and :[12] Values of zeta functions, étale cohomology, and algebraic K-theory, in Lect. Notes in Math. 342, Springer-Verlag (1973), 489-501. | MR | Zbl
:[13] Letter from Quillen to Milnor on Im(π iO→πsi→KiZ), July 26, 1972, in Lecture Notes in Math. 551, Springer-Verlag (1976), 182-188. | Zbl
:[14] The main conjecture: Appendix to Cyclotomic Fields (Combined Second Edition) by , Graduate Texts in Math. Vol. 121, Springer-Verlag (1990). | MR | Zbl
:[15] K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), 251-295. | MR | Zbl
:[16] On higher p-adic regulators, in Lecture Notes in Math. 854, Springer-Verlag (1981), 372-401. | MR | Zbl
:[17] Éléments cyclotomiques en K-thérie, Astérisque 147-148 (1987), 225-257. | Numdam | MR | Zbl
:[18] Stability in Algebraic K-theory, in Lect. Notes in Math. 966, Springer-Verlag (1982), 304-333. | MR | Zbl
:[19] Relations between K2 and Galois cohomology, Invent. Math. 36 (1976), 257-274. | MR | Zbl
:[20] A property of cyclotomic integers and its relation to Fermat's last theorem, Ann. Math. 26 (1924-25), 217-232. | JFM
:[21] Introduction to Cyclotomic Fields, Graduate Texts in Math. Vol. 83, Springer-Verlag (1980). | MR | Zbl
:[22] The Iwasawa conjecture for totally real fields, Ann. Math. 131 (1990), 493-540. | MR | Zbl
: