The quantitative subspace theorem for number fields
Compositio Mathematica, Tome 82 (1992) no. 3, pp. 245-273.
@article{CM_1992__82_3_245_0,
     author = {Schlickewei, Hans Peter},
     title = {The quantitative subspace theorem for number fields},
     journal = {Compositio Mathematica},
     pages = {245--273},
     publisher = {Kluwer Academic Publishers},
     volume = {82},
     number = {3},
     year = {1992},
     mrnumber = {1163217},
     zbl = {0751.11033},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1992__82_3_245_0/}
}
TY  - JOUR
AU  - Schlickewei, Hans Peter
TI  - The quantitative subspace theorem for number fields
JO  - Compositio Mathematica
PY  - 1992
SP  - 245
EP  - 273
VL  - 82
IS  - 3
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1992__82_3_245_0/
LA  - en
ID  - CM_1992__82_3_245_0
ER  - 
%0 Journal Article
%A Schlickewei, Hans Peter
%T The quantitative subspace theorem for number fields
%J Compositio Mathematica
%D 1992
%P 245-273
%V 82
%N 3
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1992__82_3_245_0/
%G en
%F CM_1992__82_3_245_0
Schlickewei, Hans Peter. The quantitative subspace theorem for number fields. Compositio Mathematica, Tome 82 (1992) no. 3, pp. 245-273. http://archive.numdam.org/item/CM_1992__82_3_245_0/

[1] E. Bombieri and A.J. Van Der Poorten: Some quantitative results related to Roth's theorem, J. Austral. Math. Soc. (series A), 45 (1988), 233-248. | MR | Zbl

[2] E. Bombieri and J. Vaaler: On Siegel's lemma, Invent. Math. 73 (1983), 11-32. | MR | Zbl

[3] J.W.S. Cassels: An introduction to the geometry of numbers, Springer Grundlehren 99 (1959). | Zbl

[4] H. Davenport and K.F. Roth: Rational approximation to algebraic numbers, Mathematika 2 (1955), 160-167. | MR | Zbl

[5] H. Luckhardt: Herbrand-Analysen zweier Beweise des Satzes von Roth; polynomiale Anzahlschranken, J. of Symb. Logic 54 (1989), 234-263. | MR | Zbl

[6] K. Mahler: Zur Approximation algebraischer Zahlen I. (Über den gröBten Primteiler binärer Formen), Math. Ann. 107 (1933), 691-730. | JFM | MR | Zbl

[7] K.F. Roth: Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20. | MR | Zbl

[8] H.P. Schlickewei: On products of special linear forms with algebraic coefficients, Acta Arith. 31 (1976), 389-398. | MR | Zbl

[9] H.P. Schlickewei: The p-adic Thue-Siegel-Roth-Schmidt theorem, Arch. Math. 29 (1977), 267-270. | MR | Zbl

[10] H.P. Schlickewei: The number of subspaces occurring in the p-adic subspace theorem in diophantine approximation, J. Reine Angew. Math. 406 (1990), 44-108. | EuDML | MR | Zbl

[11] H.P. Schlickewei: An explicit upper bound for the number of solutions of the S-unit equation, J. Reine Angew. Math. 406 (1990), 109-120. | EuDML | MR | Zbl

[12] H.P. Schlickewei: Linear equations in integers with bounded sum of digits, J. Number Th. 35 (1990), 335-344. | MR | Zbl

[13] W.M. Schmidt: Norm form equations, Annals of Math. 96 (1972), 526-551. | MR | Zbl

[14] W.M. Schmidt: Diophantine approximation, Springer Lecture Notes in Math. 785 (1980). | MR | Zbl

[15] W.M. Schmidt: Simultaneous approximation to algebraic numbers by elements of a number field, Monatsh. Math. 79 (1975), 55-66. | EuDML | MR | Zbl

[16] W.M. Schmidt: The subspace theorem in diophantine approximations, Comp. Math. 69 (1989), 121-173. | EuDML | Numdam | MR | Zbl

[17] W.M. Schmidt: The number of solutions of norm form equations, Trans. Amer. Math. Soc. 317 (1990), 197-227. | MR | Zbl

[18] J.H. Silverman: Lower bounds for height functions, Duke Math. J. 51 (1984), 395-403. | MR | Zbl