@article{CM_1992__82_3_245_0, author = {Schlickewei, Hans Peter}, title = {The quantitative subspace theorem for number fields}, journal = {Compositio Mathematica}, pages = {245--273}, publisher = {Kluwer Academic Publishers}, volume = {82}, number = {3}, year = {1992}, mrnumber = {1163217}, zbl = {0751.11033}, language = {en}, url = {http://archive.numdam.org/item/CM_1992__82_3_245_0/} }
Schlickewei, Hans Peter. The quantitative subspace theorem for number fields. Compositio Mathematica, Tome 82 (1992) no. 3, pp. 245-273. http://archive.numdam.org/item/CM_1992__82_3_245_0/
[1] : Some quantitative results related to Roth's theorem, J. Austral. Math. Soc. (series A), 45 (1988), 233-248. | MR | Zbl
and[2] On Siegel's lemma, Invent. Math. 73 (1983), 11-32. | MR | Zbl
and :[3] An introduction to the geometry of numbers, Springer Grundlehren 99 (1959). | Zbl
:[4] Rational approximation to algebraic numbers, Mathematika 2 (1955), 160-167. | MR | Zbl
and :[5] Herbrand-Analysen zweier Beweise des Satzes von Roth; polynomiale Anzahlschranken, J. of Symb. Logic 54 (1989), 234-263. | MR | Zbl
:[6] Zur Approximation algebraischer Zahlen I. (Über den gröBten Primteiler binärer Formen), Math. Ann. 107 (1933), 691-730. | JFM | MR | Zbl
:[7] Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20. | MR | Zbl
:[8] On products of special linear forms with algebraic coefficients, Acta Arith. 31 (1976), 389-398. | MR | Zbl
:[9] The p-adic Thue-Siegel-Roth-Schmidt theorem, Arch. Math. 29 (1977), 267-270. | MR | Zbl
:[10] The number of subspaces occurring in the p-adic subspace theorem in diophantine approximation, J. Reine Angew. Math. 406 (1990), 44-108. | EuDML | MR | Zbl
:[11] An explicit upper bound for the number of solutions of the S-unit equation, J. Reine Angew. Math. 406 (1990), 109-120. | EuDML | MR | Zbl
:[12] Linear equations in integers with bounded sum of digits, J. Number Th. 35 (1990), 335-344. | MR | Zbl
:[13] Norm form equations, Annals of Math. 96 (1972), 526-551. | MR | Zbl
:[14] Diophantine approximation, Springer Lecture Notes in Math. 785 (1980). | MR | Zbl
:[15] Simultaneous approximation to algebraic numbers by elements of a number field, Monatsh. Math. 79 (1975), 55-66. | EuDML | MR | Zbl
:[16] The subspace theorem in diophantine approximations, Comp. Math. 69 (1989), 121-173. | EuDML | Numdam | MR | Zbl
:[17] The number of solutions of norm form equations, Trans. Amer. Math. Soc. 317 (1990), 197-227. | MR | Zbl
:[18] Lower bounds for height functions, Duke Math. J. 51 (1984), 395-403. | MR | Zbl
: