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Introduction

Let R be a (classical) root system, and let Q denote its root lattice. For each
elliptic curve E=C/(Z + Z7) the Weyl group W of R acts on the abelian variety
A=Q ®z E. The quotient morphism 4 — A/W of this action plays an important
role in understanding deformations of simply-elliptic surface singularities
[Looijenga 2].

In fact it was for that purpose that the W-variety A was first introduced in
[Looijenga 1]. On A there is an essentially unique minimal ample line bundle ¥
on which W acts too. The algebra of W-invariant sections of . and its tensor
powers has been studied in loc. cit, [Bernshtein and Shvartsman], and
[Saito 1,2].

Later, Looijenga reconsidered the same situation in the more general setting
of affine root systems [Looijenga 3]. In that context A naturally appears as a
family Ay of abelian varieties, parametrized via © by the complex upper half
plane H. It was also noted by Looijenga that the natural action of the modular
group SL,(Z) lifts to that family, as well as to the ample line bundle %, on 4.
Some aspects of that action have been discussed in the work of [van Asch] and
[Kac and Peterson].

The purpose of this paper is to study the invariant theory of Ay and %, with
respect to the action of the modular group (or a subgroup I" of finite index) as
well as of W. We form the quotients by I" and, as a first step, seek to extend the
family

Ay/T - H/T

over the cusps of I'. This is achieved in a natural and quite explicit fashion, using
a toroidal embedding technique from [Wirthmiiller 2].

The invariants that we then study form a bi-graded algebra over the ring of
modular forms, graded by weight (referring to behaviour with regard to I') and
index (referring to the appropriate power of .#). We call these invariants Jacobi
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forms since in the special case when R is of type A, they reduce to (weak) Jacobi
forms in the sense of [Eichler and Zagier].

We succeed in determining the algebra of invariants for all types of root
systems excluding Eg. The invariant algebra turns out to be a polynomial
algebra over the ring of modular forms, with generators that do not depend on
the particular choice of the group I'.

The result has an application in singularity theory, to deformations of fat
points in the plane with defining ideal

x*=y% ) or (xX*—ydxy*7Y) (k=3)

This complements the paper [Wirthmiiller 1] and will appear elsewhere.

The author is grateful to the referee, who suggested various improvements to
Section 1.

The paper is organized as follows:

1. Toroidal embeddings and reflexive sheaves

We describe a class of toroidal embeddings associated with certain properly
discontinuous group actions on open cones. This class is sufficiently general for
our purposes but on the other hand explicit enough to enable us to compute the
cohomology of certain reflexive sheaves that arise naturally in the same context.

2. A family of abelian varieties

We introduce in detail the family 4, — H referred to at the beginning, as well as
its compactification. We also describe the line bundle % and its extension as a
reflexive sheaf. Using the results of Section 1 we then compute the cohomology
of that extension.

3. Jacobi forms
We define the notion of Jacobi form and formulate our main result concerning
the structure of the invariant algebra, in Theorem (3.6).

4. Construction of Jacobi forms

We first discuss some auxiliary results pertaining to the problem of extending
sections of a sheaf that are given on some arrangement of divisors. These results
facilitate an inductive construction of Jacobi forms, by picking a suitable sub
root system of R of smaller rank, and extending Jacobi forms associated with
that sub root system and its conjugates under W.

5. The individual root systems
The construction prepared in Section 4 is carried out on a case-by-case basis,
and thereby the proof of the main theorem is finally achieved.
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1. Toroidal embeddings and reflexive sheaves

(1.1) Let V be a finite dimensional real vector space, and let A = V be a lattice
with rank A = dim V.

DEFINITION. A set X consisting of cones in V is called an admissible fan if the
following hold:

(i) Each 6€X is a relatively open A-rational polyhedral cone; it does not
contain any affine lines.
(ii) If o€ X then each face of ¢ belongs to Z.
(iii) If 6eX and 7€ X then 6 N7 is a union of faces of 4.
(iv) The interior of

=:=Uo

oeXl

is an open convex cone I c ¥, and ¢ < I for each e X.
(v) If C = V is any closed A-rational polyhedral cone with C < |Z| then C
meets but a finite number of g€ Z.

Note that if X is an admissible fan then by (iv), each g € X is either contained in [
or else is disjoint from it. By property (v) then {¢nI|o€eX} is a locally finite
covering of I.

For any ¢ € X we use the symbol St(g) to denote the star of g (with respect to
Y), i.e. the union of all 7€ X with ¢ = 7. While St(s) need not be open in |Z| the
intersection St(¢) N I is always open in I. We also record the following property
of the star.

LEMMA. For each 6€X and any yel one has

(y + o) St(o) # &I

Proof. We choose a closed A-rational polyhedral cone C' = I U {0} contain-
ing y in its interior, and pick some point zeo N A. Then the convex cone
spanned by C’ and {z} is a closed A-rational polyhedral cone contained in |X|.
By (v) it meets only a finite number of 7 € Z. Since the parametrized line segment

[0, 1]ot—>(1—t)y + 1tz

maps into C the point (1 —¢t)y + tz is contained in one and the same 1€ X for all
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te(0, 1) sufficiently close to 1. We necessarily have 7€ St(g), and therefore

t
y+ mze(y+a)n St(o)

for those t. O

Let us agree to call a subset ® = Z of an admissible fan closed if 7€ ® implies
that all faces of T belong to ®. We put

|®] = U o
oe®
and write
Onl={ce®locl}

by abuse of language.
Writing Ve = C ®g V we let for each such ®

Ve/A = T(A) o T(A, ®)

denote the torus embedding determined by ® (i.e. by the collection {| s € @}, in
the sense of [Kempf et al.] p.24). We put

I(A) = (V + iD)/A,
and let
I(A, @) = T(A, D)

denote the open subset comprising all points that can be represented by vectors
from V +il c V.

(1.2) Let X be an admissible fan, and let again I denote the interior of |Z|.

LEMMA. Let T = GL(V) be a subgroup such that A and X are T'-stable. Then T
has the Siegel property:

For any two cones 6eX NI and 1€ X one has o Nyt =& for all but a finite
number of yel.

In particular T acts on X I with finite isotropy groups I'y = T'.
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Proof. Let 6 e X N I; then St(c) is the union of a finite number of teX N I.
Thus the set of all indivisible lattice points that span a one-dimensional face in
St(o) is a finite subset of A which contains a basis of V. Since the isotropy group
I, preserves this set I, is finite.

Let now te€X be arbitrary. Whenever y7 meets ¢ then ¢ = y7 and therefore
yT < St(o). There are only finitely many cones with this property, and all are
contained in I. The Siegel property follows since T, is finite. O

(1.3) PROPOSITION. Assume that X is admissible, and that A and T are T'-
stable. Then the (discrete) group I' acts properly on I(A,X). In particular the
topological quotient 1(A, X)/T is a locally compact Hausdorff space.

Proof. Let v, v’ € I(A, X); in order to prove properness we construct neighbour-
hoods U of v and U’ of v’ such that U nyU’ = ¢ for all but a finite number of
yeTI. The point v belongs to the stratum V¢ /(A + Co) = T(A, Z) for some g€ X,
and is represented by z=x+iyeV + il, say. In view of Lemma (1.1) we may
choose y in St(g) N I. Let 1€ £ N I be the cone containing y; then the set

V+iStle) < V + il

represents an open neighbourhood U of v in I(A, X). Similarly, a neighbourhood
U’ of v’ is defined. The Siegel property then implies U n yU’ = & for all but
finitely many yeI as required.

The last clause of the proposition holds since I(A, X) is locally compact
Hausdorff, and the action of I" is proper. O

COROLLARY. Under the assumptions of the proposition I(A, X)/T" inherits a
quotient analytic structure from I(A, ), and in this way becomes a normal Cohen—
Macaulay analytic variety.

Proof. By [Kempf et al.] p. 52, toroidal singularities are normal and Cohen—
Macaulay. Both properties descend to the quotient. |

(1.4). We shall construct certain reflexive analytic sheaves of rank one on the
quotients I(A, X)/I". They arise from the following type of data.

DEFINITION. Let X be an admissible fan. A characteristic triple (x, 6, 4) for Z
consists of an epimorphism

ASA

of lattices with kernel rank one, a preferred generator § eker n, and, finally, a
characteristic section

I3 V:=R®zA.
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The latter is by definition a section of n: ¥ — V satisfying the two axioms:

(i) For each g€ X the map 4|4 is the restriction of a linear map from Ro to ¥,
and
(ii) (e nA) < A for each 6€X with dimo = 1.

With each characteristic triple (=, J, 1) we associate a sheaf #(=, J, 1) on T(A, X)
as follows. Let I < V denote the interior of |Z| and put I=n"'(I)< V. In V,
consider the set of cones

where

£o={A0)|oex}
£, ={Mo) +R,8|0eZ}

(R, = (0, c0)). This £ is an admissible fan with respect to A, and T'is the interior
of |£]. In particular we have torus embeddings

T(A) & TA, £) o T(A, £),
and the epimorphism n induces morphisms of varieties

IA, £0) o TA, £)
I= I
IA, Z) o TAA, Z)

also denoted © by abuse of language.

NOTATION. Let X be an admissible fan. Then for each teX we put
2, ={oeX|oc1}

and for each deN,
2= {oeX|dimo < d};

clearly these are closed subsets of X.

LEMMA. Let (=, 8, A) be a characteristic triple for the admissible fan X, and let
® < X be an arbitrary closed subset.



Root systems and Jacobi forms 299
Then the inverse image of T(A, ®) under T(A, £,) 5 T(A, Z) is T(A, ®) where
®, = {6eZ|n5e ).
If the characteristic section A has the property
AP AA) <A
then the restriction
T(A, ) 5 T(A, D)
is an algebraic C*-principal bundle.
Proof. The first statement is obvious. To prove the se~cond, we choose for each
oe® a linear extension A, of 1| ¢ that sends A into A. Writing C* = T(Z) we

have an algebraic isomorphism

T(A, £,)x T(Z) - T(A, £,,)
(2], [u]) [A,(2)+ud]

which is a trivialization of T(A,®,) > T(A, ®) over the affine open subset
T(A, Z,). If 6’ € ® is another cone the corresponding trivializations differ over

T, )~ T(A, Z,) = T(A, £,nZ,)

by an automorphism of T(A, £,, n £,,) which is a translation on each fibre.

O

The lemma shows in particular that
TR, £S5 T(A, )

always is a C*-bundle; we let £’ be the sheaf of local sections of the associated
line bundle and put

L(m, 6, A) =j &
where j: T(A, ') o T(A, ) is the inclusion.

DEFINITION. We refer to #(n, d, A) as the reflexive sheaf associated to the
characteristic triple (=, , 1).
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(1.5). We collect a few properties of the sheaves .#(n, 4, §) which are immediate
consequences of the way they are constructed.
(i) Let (m, 8, A) be a characteristic triple. Any splitting of the exact sequence

05Z65A>A>0

will identify the characteristic section 4 with a certain real-valued function u on
|ZI. If i: T(A) o T(A, X) is the inclusion then #(, 6, 4) will appear as an Or, x)-
submodule sheaf .# of i, O7,. The space of sections of that sheaf over T(A, Z,)
is

HYT(A, Z,); #)= @ C-e*™m (1.6)

meA VY
m2=uonc

where AY = Hom(A, Z) denotes the lattice of characters of T(A). In the
terminology of [Kempf et al.], .# is the complete coherent sheaf of T(A)-
invariant fractional ideals characterized by the function ord .# which is the
convex interpolation of u on [Z!], see loc. cit. p.29. This fact may serve as a
characterization of the class of sheaves that can be obtained from characteristic
triples. It also proves that #(x, 6, 1) is a reflexive sheaf of rank one indeed, as
suggested by our terminology.

(il) ZL(m, 9, A) restricts to an invertible sheaf over T(A,®) (® < X a closed
subset) if and only if A(J®| N A) = A holds.

(iii) Let us call two characteristic triples (n, d, A) and (', &', A') isomorphic if
there exists a linear isomorphism A 3 A’ such that 7’'o @ =m, ¢(6)=4&’, and
¢@° A= J'". Then isomorphic triples give rise to isomorphic sheaves on T(A, X).

(iv) If m is a non-zero integer then

3(7\ +155A,15, z)
m m

is isomorphic to the reflexive hull of the mth tensor power Z(, 4, A" (m > 0)
respectively of (£(x, 5, 4)" )™ (m < 0).

(v) The action of T(K) on itself by translation induces on action of T(1~\) on
the bundle

TA, £8) 5 T(A, £V

as a group of bundle equivalences, the action on the base being through the
homomorphism T(A) — T(A). Therefore, for each s €X the torus T(A) acts on
the space of sections of #(=, d, A) over T(A, X,). Writing .¥ = (=, 3, 1) we have
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a decomposition

HYT(A, Z,); €)= @ HUT(A, Z,); £)
leAVY

into T(A)-weight spaces, indexed by the character lattice AV = Hom(K, Z). We
claim that

dim HYT(A,Z,); #) =1 if<5,Iy=1andl°A<0Oono

while HY(T(A, Z,); &) is trivial for all other Ie AY. Indeed the kernel of the
homomorphism T(A) — T(A) acts with weight 1 on all sections of T(A) — T(A),
and for given le AV with {4, [) = 1 the unique section of A 5 A with image ker I
represents a generator s, H(T(A); %) This section s, is regular on T(A, Z,) if
and only if /oA < 0 holds on ¢. The resulting decomposition

HYTA, L), £)= @ C-s (1.7

leAY
Ghy=1
leA<Oong

is just (1.6) in an invariant guise.
For later use we record the following facts.

(1.8) PROPOSITION. Let (m, 8, A) be a characteristic triple.

(a) For each o €X there exists an integer m > 0 such that the reflexive hull of
ZL(n, 6, )" is invertible on T(A, Z,).
(b) L(=n, 9, A) is a Cohen—Macaulay shedaf.

Proof. (a) follows from (ii) and (iv) by choosing m sufficiently divisible so that
M@ n A) is contained in A + (1/m)Zé.

Likewise, to prove the local property (b), we may work over T(A, X,). If we
determine m as in (a) then

M nmA) = mA + Z6.
Thus the sheaf

P = LMmA+765mA, S, )

is invertible on T(mA, X,), in particular it is a Cohen—Macaulay sheaf there. If g
denotes the quotient morphism

T(mA, Z,) 5 T(A, Z,)
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corresponding to the exact sequence
0 - A/mA - T(A) > T(mA) -0
then we have
L(r, 5, 3) = (g, LY
on T(A, X,). The latter sheaf is a direct summand of a Cohen—Macaulay sheaf,

and the assertion follows. 0O

(1.9) In this subsection we fix an admissible fan Z in ¥, and let I denote the
interior of |X| as usual. For any closed subset ® = X we define

I(A, @) = I(A, D\I(A, Z\(Z 1))
= T(A, O\T(A, T\E A D).
As the latter description shows I(A, ®) is an algebraic subscheme of T(A, ®)
rather than a mere analytic space. Note that I(A, ®) need not be of finite type
though it always is so locally.
Let now (A 5 A, 8, 1) be a characteristic triple for X. Following the procedure
described in [Kempf et al.] p. 42, the (algebraic) cohomology groups H(I(A, ®);

Z(m, 3, 2) ® Oyawy) can be computed combinatorially. To this end we put, for
each character le A" with (5,1 =1

Y(®; m, 6, 2) = {yel® n 1|y, I°1) < 0}
Y/(®; m, 8, 1) = {ye|® nI|<y, I°A) <0}.
(1.10) PROPOSITION. For each le A with {(5,1) = 1 there is a natural additive
isomorphism
H*(I(A, ®); L(n, 6, 1) ® Oyp )
~ H¥(Y(®; =, 3, A), Y(D; =, J, A); C).

Proof. Almost verbatim that of loc. cit. p. 42. O
(1.11) We make the same assumptions as in the previous subsection.
DEFINITION. A subgroup I' © GL(V) is admissible (with respect to X) if

(i) A and X are I'-stable, and
(i) the orbit set (X N I)/T is finite.

Our aim is to prove an analogue of (1.10) for the quotient of I(A, Z) by an
admissible group I'. We first note:
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(1.12) PROPOSITION. The analytic subspace I(A, Z) /T of I(A, Z)/T is compact.

Proof. Let 6 € £ N 1. Since St(o) is a neighbourhood of ¢ in I the closure of the
stratum V¢ /(A + Co) in I(A, Z) is a compact analytic space. As I is assumed to
act admissibly there are but a finite number of I'-orbits in X N I, cf. (iii) of the
definition in (1.2). Therefore I(A, X)/I" is covered by a finite number of compact
spaces, and the proposition follows. O

DEFINITION. A group I' = GL(V) is said to act admissibly on the character-
istic triple (n, 9, ) if & is a fixed point of I, and if the action of I" on ¥ is
admissible with respect to £ and descends to an admissible action on V that
makes [Z| 5 7 equivariant too.

If I acts admissibly on (=, J, A), and if

IA, 2)5 I(A, )T

is the induced analytic quotient then #(=, §, 1) descends to a reflexive analytic
sheaf

L(n, 8, AT := (g, ZL(m, b, )"

on I(A, X)/T. Since q is locally a finite mapping this sheaf still is a Cohen—
Macaulay sheaf as in (1.8).

Recall*that for each closed ® — X and each Ie AY with <8,I> =1 we have
defined a topological pair

(Y/(D; =, 6, A), Y/(D; 7, 5, 2)).
If @ is I'-stable then I' also acts on the disjoint sum

Y (Y@ m, 6, ), Y(®;m, 6, )

leAY
=1

via
Cay: (I, yy— ey~ yy).

This action is properly discontinuous with finite isotropy groups, and has a
finite Hausdorff quotient

Y(@; =, 6, 4), Y(®; =, 6, 1)) = [Z(Y,((D; m, 6, A), Y|(®@; =, 6, l))] / I.

(1.13) THEOREM. Let £ be an admissible fan in V, and let (n,6,A) be a
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characteristic triple for %, on which T = GL(V) acts admissibly. Then the
(analytic) cohomology of #(m,d,2)/T over I(A,Z)/T" can be computed via a
canonical isomorphism

H*(I(A, Z)/T; L(m, 3, ))/T ® Oyazym) ~ HXNY(Z; 7, 6, 4), Y'(Z; =, 3, A); C).

Proof. We first prove the existence of a normal subgroup I'" = " of finite
index, with the property:

(1.14) Whenever yeI” and teZ N1 are such that TnyT NI # ¢ then y = 1.

Let F = A be the set of indivisible generators of one-dimensional cones in X,
and put

F,={{v, w} = Flv#w, and {v, w} = St(o) for some ceZ' N I}.

Since I' is admissible it acts on F, with a finite number of orbits, and we find a
positive integer m such that

v—w¢mA for all {v, w}€eF,.
Then
I':= {yel|(y—id)A) = mA}
is a normal subgroup of finite index in I" which satisfies (1.14). Indeed, let yeI”

and e X N1 be such that 7 y7T N I is non-empty. This intersection contains
some ge X! N I, spanned by veF, say. We have

yv€yT < St(o),

and by definition of I'"" this implies yv = v. Thus y maps St(¢) into itself, and
therefore must be the identity.
We now choose I'” so that (1.14) holds. For each 1€ X n I the union

U IA, 2,y

yel’

then is a disjoint one; therefore I(A, £)/I" is covered by the affine varieties

[ U I(A, zw)'] / I'=1IAZX),

yel”
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with 7 running through a system of representatives of X NI modI”. Thus
I(A,Z)/T" itself has the structure of a complex algebraic variety, which is
complete by (1.12). In view of the GAGA principle we may compute the
cohomology groups in question as algebraic rather than analytic cohomology
(for I'" in place of I).

Likewise (1.14) implies that for each te X n I the union

UeinD

yel”

is disjoint, and that therefore the pair
(Y(Z; =, 6, 4), Y(Z; =, 6, 4)
defined by I is covered by the pairs

; (M(EZ; m, 6, 4), Y(Z; 7, 6, 4)

(te (X n I)/T"). The assertion of the theorem for the group I'"" in place of I' now
follows upon comparing the Cech complex of the affine covering of I(A, Z)/T”
(with coefficients in £(r, 6, 1)/T" ® (OI(A,E)'/F’) to that of the covering of the pair
(Y(Z; =, 6, A), Y'(Z; =, 6, A4)) (with constant complex coefficients).

The isomorphism thus obtained is equivariant with respect to the finite group
I'/T". The theorem therefore follows in general upon passing to the I'/I"-fixed
parts of the cohomology groups. O

(1.15) We keep using the notation from the previous subsections. There is a
criterion of ampleness for the sheaves #(r, 6, 1)/T, as follows.

(1.16) THEOREM. Let X be an admissible fan in V, and let (n,6,2) be a
characteristic triple for E. Further, let T < GL(V) act admissibly on the triple
(m, 0, A).

Then the sheaf £(n, 6, )/T ® Oyazyr on I(A, Z)/T is ample if and only if the
characteristic section 1 is strictly convex on NI in the sense that for each
oceX NI there exists an le AV such that

O, =1
lol >0 everywhere on |Z|, and

loA=0 exactly on o.

Proof. Since there are only finitely many I'-orbits in £ n I Proposition (1.8)
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implies that for suitable m > O the reflexive hull of #(n, 6, )™ is invertible.
Replacing (K A, 0, A) by (/~\ +(1/m)Z6 = A, (1/m)d, ) we thus may assume that
&L= P(m, o, ) itself is invertible.

First suppose that #/T" ® Oy 5y,r is ample, and fix any 6 € £ N 1. The closure
S of the stratum V¢ /(A +Co) in I(A, XY is a compact analytic variety, and the
quotient mapping

S5 IA, Z)/T

is a finite morphism. At the cost of raising % to a suitable tensor power we may
assume that for each se§ the stalk % ® Os is isomorphic to Os, as a I'y-
module. It then follows that

£ ® 05 = q"(ZL/T ® Oy zy1)s

which shows that £ ® 0 is an ample sheaf on S.

The variety S is the torus embedding of T(A/(A N Ro)) defined by projecting
all members of X that are contained in St(s). Applying the ampleness criterion
[Kempf et al.] p. 48, Theorem 13 we conclude that 4 is strictly convex at ¢. This
being true for all 6 € £ N I it easily follows that A is strictly convex globally, using
the fact that each A-rational compact segment in |X| meets only finitely many
geX.

Assume now that A is strictly convex on £ nI. We choose a finite closed
subset ® < X sufficiently large so that I(A, ®) maps onto I(A, Z)/I". Arguing as
in [Demazure 1] p. 568, Théoréme 2 we find a positive integer m and a finite
number of characters le AV with {8, [ = m such that the corresponding sections
in H(I(A,Z); ™ ® Oypzy) define an embedding of I(A,®) in a projective
space. Enlarging m we can arrange the choice of the characters [/ so that all these
sections have support in I(A, @).

Let now z and z’ be points in I(A, ®) with I'z #+ I'z’. By the preceding, we find
an even larger m and a section

se HYUI(A, Z); ™ ® Oy xy)

that vanishes on all but one point of I'z U I'z, and has support in I(A, ®)". As the
number of points any I'-orbit can have in I(A, ®) is bounded, m can be chosen
uniformly for all choices of z and z’ in I(A, ®)'. Since the action of I on (x, , 1) is
admissible the sum

2 s

vell
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is locally finite and thus defines an invariant analytic section in
HYI(A, 2); ™ ® Oyaxy)" = HI(A,Z)/T; L™/T @ Oypzy/p)-

By construction this section separates the orbits I'z and I'Z'.
Likewise one can construct invariant sections that separate tangent vectors.
We omit the details. O

2. A family of abelian varieties
(2.1) Let R be a reduced irreducible finite root system, and let
R=Rv""

be the dual of the affine root system obtained by completing RV. A choice of a
basis

{oay, .. 0}

of R also determines bases of RY, RY " and hence of R; we let aoeT{ denote the
extra base root. Note that R is canonically embedded in R.

We think of R as realized in a real vector space ¥ of (minimal) dimension r + 2.
Following [Looijenga 3] we introduce the Tits cone I* = ¥ of R; its interior
I = V determines the tube domain

Q=V+il V.
Let § = ZR respectively Q = ZR denote the root lattices of R and R, and define

deQ as the smallest positive linear combination of the base roots that is
orthogonal to (R)¥ = R *. Then as the coefficient of &, in 6 is 1 the projection

VS V/IRS =V
will send the sublattice Q = @ bijectively to Q/76. In this way we will often
identify these two lattices; in particular this allows us to think of R as a root

system in V. If we put

I*=n)<cV, I=nd), Q=) c
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then
t=nta", T=z41), Q=n'Q).
(2.2) The root systems R and R generate Weyl groups

W< W< GL(Y),

the first of which, W, preserves the subspace RQ < V. We also have an extended
Weyl group
W" =0>aW c V>GL(V)

of R, which is a group of affine automorphisms of V. These groups also act on the
tube domains Q and §, as is clear from the definitions. _
The structure of W and W " can be understood as follows. Let T < W be the

kernel of the projection homomorphism
W — GL(V)

(which is defined since § is a fixed point of W). The obvious group homomorph-
isms fit into exact sequences

1- T > W - W o1
150>T> Wr > W -1 (2.3)
0> Z6 -»0>=T->QxT-1.

In order to give an explicit description of these extensions we introduce the W-
invariant scalar product (?|?) on Q, normalized by the requirement

(0—ag|d—ag) =2

(note that § —a, is a short root of R). We shall also think of (?|?) as defined on
the vector space RQ, and sometimes even on ( or RQ (with a radical spanned
by 9).

In order to fix coordinates on ¥ we choose a vector f e ¥ which is orthogonal
on RY and is normalized by

Byogy=1
We then assign to each coordinate triple (4, z, 7)e R x RQ x R the point

—ud+z+1BcRO+RQ+RB =V,
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Each element of T < W can now be written
(u, z, D) (u+(t]2) + 3t O)r, z + 12, 1)

for a uniquely determined t € Q, and this sets up an isomorphism between T and
the additive group Q, cf. [Kac] p.69 or [Looijenga3] p.28. This formula
likewise describes the extensions (2.3); indeed the action of W on T by
conjugation corresponds to the natural action of W on the lattice Q, and § >« T
becomes a Heisenberg group with centre Z6.

Note that the actions of W on I, and of W on Q are properly discontinuous
with finite isotropy groups, and yield Hausdorff topological respectively analytic
quotients. This follows directly from the explicit description of the actions
though it also is part of the general theory of root systems [Looijenga 3].

(2.4) There is a natural action of the modular group SL,(Z) on V¢ and Q,
expressed by the formula

a b'(uzr).—» u_f(zlz) 1 Zat+b

c d)"” 2ct+d’ ct+d  ct+d)’
In fact this defines an action of a semi-direct product W "> SL,(Z), the latter
being determined as follows: conjugation by the matrix

a b
<c d)eSLz(Z)

acts trivially on Z6 x W = W, and sends z><te€ @ >aT ~ Q>aQ to

[Gac(z|2)—be(z| t)+3bd(t| £)d + az —bt]>a (—cz+dt)e ) >aT.

Since SL,(Z) acts properly discontinuously, with finite isotropy groups, and with
a Hausdorff analytic quotient on the W " -invariant coordinate t varying in the
upper half plane H the same properties hold for the group W ">aSL,(Z) with
respect to its action on the tube domain Q.

We now fix a subgroup I' = SL,(Z) of finite index, and study the action of I"
on the C*-principal bundle

C* = C8/Z6 & /O >aT
l (2.5)
Q/Q >aT

Note that Q@ < V¢ and Q Ve can be described as the inverse images of the
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upper half plane H under the complex coordinate t on Ve resp. Ve, cf. [Kac],
[Looijenga 3]. Adjoining the fibre C via

C6/26 =C/Z=C* C
ud —ur—s e

we pass to a line bundle on Q/Q > T. Let .Z denote the corresponding invertible
sheaf. Dividing now by the action of I' we obtain an analytic quotient

Q/0><aT5Q/(Q>aT)>al’ =: A’
e ! 1P
H - H/T =:C

together with the coherent analytic sheaf
L= (q,2)F

on A'. For any 7€ H the fibre Ar, of p’ over the orbit I't € C' is the quotient of the
abelian variety Q,/Q >a T by the isotropy group I'; of 7, with a non-reduced
structure if this group contains elements other than + 1, i.e. if 7 is an elliptic fixed
point of I'. Note that in case I' contains —1 the general fibre A, is not an
abelian variety but its (singular) Kummer quotient.

The sheaf &’ on A’ always is, by construction, a reflexive Cohen—Macaulay
sheaf of rank one.

(2.6) Let C be the compact curve obtained from C’ by adding the cusps of I'. We
wish to extend A’ and #’ over C. Quite general compactifications of families of
abelian varieties have been constructed by Namikawa, cf. [Namikawa]. The
present situation is particularly simple as the abelian varieties in question are
mere products of several copies of an elliptic curve, and only the modulus of that
curve is allowed to vary. In fact quite an explicit compactification of A4’ is readily
at hand if a construction from [ Wirthmiiller 2] is used. Like ‘Namikawa’s it is of
toroidal type and, based on the discussion of reflexive sheaves in Section 1, it
also provides a natural extension of %"

We proceed to describe this compactification. As SL,(Z) acts transitively on
the set of cusps of I' it suffices to deal with the standard cusp at ico. A typical
punctured neighbourhood of this cusp is represented by the affine upper half
plane

ic+ HcC (c>0),

and as is well known, for ¢ > 1 each orbit of the isotropy group I';,, in ic+ H is
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the intersection of ic + H with a full I'-orbit. If the cusp at ico is a regular one we
have

e f )
remtenf )

for some positive integer s. Similarly, in the case of an irregular cusp we have

(=D ks
{5 &)

Note that the matrix

(0

acts on V¥ as the translation by the vector sp.

keZ} if —1¢I"

X))

keZ} if —1el’

keZ}. 2.8)

(2.9) The root basis {a, . . . , &} together with the vector — sf constitutes a mixed
root basis in the sense of [Wirthmiiller 2] Section 9. Its Dynkin diagram 2
comprises the Dynkin diagram of R as the full subdiagram Jy;,, While D,y
consists of just one vertex realized by the vector —sf. The remaining edges of 2
are determined by the values

(—sp,og)=—s
Pyayy=0 fori=1,...,r.

EXAMPLE. If R is of type B,

then the Dynkin diagram of R is

@0

and 2 is the mixed diagram

a0 —sp
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Following loc. cit. the mixed root basis gives rise to a toroidal embedding Z(2)
of §/A where A denotes the lattice of rank r+2

A=0Q+7sp

Let K = ¥ be the convex cone spanned by the orbit Wg; then K = I* since g
lies in the closed fundamental chamber C of R. The analytic space %(2)
constructed in loc. cit. is, by definition, the union of a copy of the upper half
plane H, and the open subset of the affine torus embedding determined by A and
K, comprising all points representable by vectors in Q.

(2.10) Rather than working with (2) directly, we use the cone K in order to
construct a (non-affine) torus embedding of T(A), where

A=Q+ZspcV.
To this end we need an admissible fan X for A, which we take to be the set of
projections of all proper faces of K under the linear map ¥ 5 V. The following

proposition will show, in particular, that X, is admissible indeed.
We let X denote the set of proper faces of the closed cone

K=KUR_} (R_=(—0,0)),
and put

K = o,

deXy

K is the topological boundary of K in V. Thus
Ty = {n5|5eLy}

by definition.
(2.11) PROPOSITION. (a) ®(K) = I*, and for each (z, 7)€l the set

{ueR|(u, z, 1)eK}

is a closed ray in R, bounded from below.
(b) The restriction of =: Vov

Kni3sl

is @ homeomorphism.
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(c) K'\R_$ is the image of a section
}’K: 1 + - i;

which is characteristic with respect to £y and A 5 A.

Proof. Clearly n(K) is contained in I"*. On the other hand {(z, 1) e n(K) |t = 1}
is a non-empty convex set which is invariant under the lattice of translations
T ~ Q, whence this set is the full affine space {(z,7)e V|t =1}. This proves
aK)=1I".

Let C = V denote the closed fundamental chamber of R as before. Let
ye € n I be arbitrary. By [Looijenga 3] (2.4) the convex hull of the orbit Wy
meets C exactly along the set

C_r\(y +§_{a0,...,a,})

where R_ =(— o0, 0]. As the chambers induce a locally finite covering of the
open Tits cone I this implies that KT is closed in I (put y=p). For
yeCnInK it also implies

y+R_6cCnIinK,
and since C is a fundamental domain for the action of W on I* we conclude
y+R_8cInK foreach yeInK.

Given (z, 7)€ I, the set {ue R|(u, z, t) € K} therefore equals [, o) for some te R,
or t = —oo. In fact this last possibility is ruled out at once since Wp, and hence
K, is completely contained in the half space {(u, z, 7)€ Viuz 0}. This completes
the proof of (a).

We now know that for any yel the set n~(y) N K is a closed ray in V. This
ray intersects K" in its end point, which we define to be A1x(y). We complete the
definition of A: I* — ¥ by putting A,(0)=0. Then A | is linear for each 6 € ¢
because = is linear.

The fundamental chamber C meets but a finite number of cones from £, N I.
Since C has the form

C=n"xn0)

this means that nC meets but a finite number of cones from X, N I, which in turn
implies that ; N [ is a locally finite covering of I. The section I 2 KA I, being
piecewise linear, thus is seen to be a continuous inverse to K' [ 5 I.

In particular we now have proved (b), and in order to complete the proof of (c)
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it remains to show the integrality property
(@A) c A

for each 0 € £ with dim o = 1. The image A¢(0) e $ « is a one-dimensional face of
K, and in view of the classification of faces of K given in [ Wirthmiiller 2] p. 230,
Theorem 9.5 that face is W-conjugate to the ray R, f < V. We therefore may
assume Ag(c)=R, B, and the assertion follows since s:mfeV is a primitive
vector in A. O

REMARK. It is not generally true that A,(I* N A) A. To what extent this fails
may be read off from the classification of faces of K. In fact, up to W-conjugacy
these faces are classified by the subdiagrams of & in the sense of loc. cit. It is
readily verified by inspection that the only e e X with Ax(G N A) & A are those
with Ag(o) corresponding to one of the subdiagrams

)
®

o—
e
®
®
®
)

(R of type Eg). The numbers marking the vertices that are not included in the
subdiagram are their multiplicities in the greatest root 6 — a, of R; in all cases
the gc.d. of these numbers is the smallest positive integer m with
(@A) = (1/m)A.

(2.12) We let X, and A retain the meaning from the previous subsection.

LEMMA. The group T acts freely on Xg N 1.
Proof. Let teT and ceXyn I, and assume t(o) = . As the coordinate
7: ¥V > R is T-invariant t must fix the relatively compact set

on{z eVt =1}
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The barycentre of this set will then be a fixed point of z. But ¢ acts as a translation
on the affine space {(z,7)e V|t = 1}, and thus ¢t = 1 follows. O

The lemma shows in particular that the action of T on V is admissible with
respect to Xg, and a fortiori T acts admissibly on the characteristic triple
(m, 8, Ax). We therefore have an associated reflexive analytic sheaf #(r, 8, Ag)/T
on I(A, 2g)/T. If the cusp at ioo is regular, and if —1¢I" then the open subset

{[z, 7]|Imt > ¢} = I(A, Tg)/T
naturally extends the restriction of 4’ % C’ over the punctured neighbourhood
{TteC'|Imt > c}

of the cusp at ico. By construction the sheaf £ (=, §, 1)/ T extends .’ in the same
sense. In a slightly different way, this is also true if —1€T, or if the cusp is
irregular. In the former case the extension is provided by the quotients of
I(A, Zg)/T and &L(n, 6, Ax)/T by the involution

[z, 1]+~ [—2z 1]

Likewise, if the cusp is irregular one would begin the construction with 2s in
place of s, and then form the quotients by

[Z’ T:IH[_Z, T+ S].

Using the action of SL,(Z) in order to handle all other cusps of I' we obtain a
proper analytic morphism

A—p>C

extending p’, as well as a reflexive rank one sheaf ¥ on A with Z|4' = &%".

(2.13) We compute the cohomology of £ and its powers along the fibres
A, = p~Yc), for all ceC.

At first we look at the fibres of the projection
Q/Q><T—— H,
which is a smooth family of abelian varieties. For any fixed 7€ H, we let

g;’l = g"‘@(g""{:
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be the invertible sheaf induced by £™ on the fibre (Q/Q><T), over t. As is well
known, for all exponents m # 0 one has

dim H*(Q/(Q > T); Z™) = |P/Q|-nt",

with all cohomology concentrated in degree 0 if m > 0, and in degree rif m < 0.
The lattice P = QQ is the weight lattice of the finite root system R. For details
see [Mumford] Section II1.16 and [Looijenga 1] p. 19.

As to the cohomology of the trivial bundle we have, for each 7 e H, a canonical
isomorphism

H*(Q/Q>aT),; 0) = A*Homc(CQ, C) = A*Homz(Q, C)

For each me Z we let £™ denote the reflexive hull of the tensor power #™ on A.
For its restriction to A" we have the alternative description

2 = (g, 7"

where Q/Q >T %> A’ is the quotient map. We now can determine the coho-
mology of #™ along the fibres of 4’5 C'.

(2.14) PROPOSITION. Let 1€ H, let ce C' be its image in C', and put
LM = 2™, C.
Then

H*(A,; ggm)) ~ {H*«Q/QNT)r; %;") lf —1¢T,
HY(Q/Q>T); 7=V if —1eT.

Proof. We let ¥ = H be the connected component of 7 in the fibre of the
quotient map H — C’ over c¢. Thus T is a point that carries a non-reduced
structure in case 7 is an elliptic fixed point of I. Since Q/Q >« T is smooth over H
and since the Betti numbers of the sheaves #™ do not depend on 7€ H the direct
image sheaves Ri‘c*g’"' are locally free on H. In particular there exists, for each
integer i, an isomorphism

H{(Q/Q><T):;; %) ~ H(Q/Q > T); ™) ®c 0;.

Though not canonical, such an isomorphism can be chosen equivariant with
respect to the isotropy subgroup I', = I'. The Leray spectral sequence of

(Q/Q>aT)y—> 4,
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now Yyields

Hi(4; ™) = H(A,; 4, 2" ® 4, O
= H(A; 4,(Z" ®q,, O
= H'(A,; q, 27"
= H'(Q/Q > T):; 7
~ [H(Q/@>aT); Z7)®c0:]".

The finite abelian group I', acts on ¢; by the regular representation unless
—1el, in which case it acts via the regular representation of I',/{+1}.
Therefore the last vector space is isomorphic to H{((Q/Q>a T),; P™), respectively
its even part H(Q/Q>aT),; ™)1, 0

(2.15) We complete the calculation of the previous subsection by computing the
cohomology of #™ over a cusp of I'. Again it suffices to consider the standard
cusp at ioco.

We first assume —1¢I". As before we put, for any me Z

P = MR, C.
By Theorem (1.13), H*(4;; £\™) is, for m # 0, the cohomology of the
topological pair
~ 1 _ 4 1 ~ 1 n 1
Y= (Y (S R+ 26BN -6, Y (ZgR+—05A =5, i) ).
m m m m

Recall that by definition

=] 3 wn|

GH=m
where
Y, = {yel|<{y, l°Ag) <0},

Y; = {yel|{y loAx) <O},

Thus (Y, Y’) decomposes into a disjoint sum indexed by the T-orbits in the affine
lattice {Ie AV |(8,1) = m}. Those I with [ A positive everywhere on I clearly
make no contribution to (Y, Y’); they may be characterized by the property

I>0onKnT.
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If, on the other hand, | has a zero in the interior of K then the T-orbit of [
contributes an r-dimensional manifold with boundary to Y, and the interior of
the same manifold to Y’. Thus from such [ there is still no contribution to the
cohomology of (Y, Y’).

The remaining characters le AV (with <8,1> = m) are those with ker! a
supportmg hyperplane of K that intersects K along the closure of some face
from £ N I. For m > 0 and any such I the set ¥, is the closure of a cone from Zg
while Y; is empty. Thus the orbit gives a one-dimensional contribution to
HY(Y, Y’; C). Likewise, for m < 0 there is a one-dimensional contribution from
the orbit of I to H'(Y, Y’; C).

It remains to count the number of relevant orbits in {Ie A" | (5,1 = m}. To
this end we observe that any such [ is uniquely determined by its restriction to
the sublattice A = A, and further restricts to a character on Q < A, i.e. a weight
I'e P of the root system R. Conversely, given any weight I € P, there clearly is a
unique rational extension kA — Q of I’ with (8,1 = m and ker! a supporting
hyperplane of K intersecting K along the closure of a face from £,  I. By the
classification of faces of K [Wirthmiiller 2] p. 230, Theorem 9.5, some W-
conjugate of that face contains f; this implies that / is integral on f, and therefore
that leAV.

We thus have established a bijective correspondence [« [’; it turns out T
equivariant if we let te T act on the lattice P as the translation by mt. We
therefore have exactly |P/Q|-m" contributing orbits in {le AV, = m}, and
conclude

dim H¥(4;,,; Z{%) = |P/Q|-m’
for all m s 0, with all cohomology in H® for m > 0, in H" for m < 0.

In order to compute H*(4;,,; 04, ) we think of the trivial bundle as obtained
from the characteristic triple (A % A, 8, Ao) with

Aoz, 1) = (0, z, 1) e V.
The only contribution to the homology of (Y, Y') comes from the character
le AV (with {8,1> = 1) that vanishes identically on A. Its contribution to (¥, Y’)

is the pair (I/T, &), and as I/T is homotopy equivalent to a real torus of
dimension r we obtain

H*(Ai; O4,,) ~ A*|Homgz(Q, C).

Finally, our calculations are summarised by
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(2.16) THEOREM. For each meZ and each i > 0 the function
Cac—dime Hi(A,; £™)

is constant on the curve C.
Proof. This has been proved, with the exception of the irregular cusps and the
case —1eT. Dividing by the extra involution takes care of these as well. [

COROLLARY. For each meZ the direct image sheaves R'p, ™ are locally
Jree sheaves on C, and for all points c e C one has

Hi(A; £™) = Rip, £™ ®,,C.

Proof. Being torsion free, #™ is flat over the curve C, and the theorem on
cohomology and base change applies. Od

3. Jacobi forms

(3.1) We introduce another reflexive rank one sheaf .# on the variety A4
constructed in the previous section. Recall from (2.12) that A was obtained by
gluing A’ = p~1(C’) with copies of I(A, Z¢)/T, the latter divided by the involution
[z,tT] 2 [—2z,1] if —1eIl. We first define a sheaf .#’ on A’ in terms of the
quotient map

Q/Q>aT—1> 4"

a section of .#' over an open subset U’ = A’ is a holomorphic function ¢ on
q~1(U) that obeys the functional equation

1 at+b a b
(P<c1:+d z, a+d>—-(c1:+d) ¢o(z, t) for all (c d)el“.

If U’ is also contained in I(A, Xg)/T (respectively its quotient by the involution)
then such ¢ are just the holomorphic functions on U’. Therefore .#' is
canonically isomorphic to @,. in some neighbourhood of 4\ A’. We let .# denote
the sheaf on A4 obtained from .#’ by gluing with @, along such a neighbourhood.

For each integer k we let .#® denote the reflexive hull of the tensor power .#*.

For many choices of I" and k the sheaf .#® is invertible, and in fact comes
from a line bundle .#® on C. A local section of #® over C' = H/T is by
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definition a local function ¢ on H obeying the functional equation

at+ b " a b
¢<Ct+d>—(a+d) o(t) for all <c d)eF.

@ is holomorphic at ico if its Laurent expansion in e>™* is a Taylor series; this
also determines the notion of holomorphy at the remaining cusps. Thus the
global sections of .#® are just the modular forms of weight k; we write

M, = HO(C; %)

and
M* = (_B Mk
k=0

for the graded algebra of all modular forms.
We put # = .4V, Note that .#® is an invertible sheaf unless —1 eI and k is
odd, in which case .#® is the zero sheaf.

(3.2) PROPOSITION. Each of the following conditions implies that the canonical
homomorphism

p* MO - _y®

is an isomorphism:

(i) —1¢T, and T has no fixed points on H,
(ii) k is divisible by 12.

If (i) holds then M™ = #* while if (ii) holds then M® = (M D) /12,

Proof. Condition (i) means that I" acts freely on H while (ii) implies that all
isotropy groups I', (1€ H) act trivially on the factor of automorphy (ct + d)*.
Either implies that p*.#® — .#® is surjective; the kernel, being a torsion
subsheaf of p*.#™, must then vanish. This proves the first assertion, while the
second is straightforward. O

(3.3) We now let g, denote the reflexive hull of the sheaf #® ® #™ on A. In
view of Propositions (1.8)(a) and (3.2) the following statement makes sense.

(3.4) PROPOSITION. For all positive integers k and m the sheaf #,,, is ample.

Proof. We may assume that #,,, = p*.#4® ® #™, and since .#™® is ample on
C it suffices to show that ™ ® @, is ample on each fibre 4, of A5 C. As
ampleness is not affected by taking finite quotients it suffices to see that
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Z ®o, ,C is ample on (Q/Q>«T), for each t€ H, and that
Z(r, 0, )/ T ® Oyazy/r

is ample on I(A, Zx)'/T. The former is classical, cf. [Mumford], while the latter
follows from Theorem (1.16). O

DEFINITION. The global sections of the sheaf #,, on A are called Jacobi
forms of weight k and index m. We let

ka = HO(A3 }Gcm)
be the complex vector space of such Jacobi forms, and put

J** = @ Jim-
keZ
meZ

Since for Jacobi forms of zero index one has
JkO = HO(C; j‘k)) = Mk fOl‘ all k,

J 44 18 a bi-graded algebra over M,. Note that while clearly J,,, =0if m <0
there may be non-trivial Jacobi forms of negative weight; as we shall see below
this is in fact the case.

We are particularly interested in symmetric Jacobi forms ¢ € J3,: those which
are invariant with respect to the action of the finite Weyl group W on 4 and #,,,.
The definition of Jacobi forms is easily rewritten in analytic terms. For the sake
of simplicity we do this only for symmetric Jacobi forms @eJJ, in case
I' = SL,(2) is the full modular group. Such forms correspond to holomorphic
functions ¢: Q — C with the following properties:

) oz + g, 7) = ¢lz, 7) _
oz + 19, 7) = e~ 2mim(qlz) —mim(glg)c . o(z, 7)
for all ge Q;

(u) p ( 1 at + b> - (CT + d)k,enim(zlz)/(ct+d),(p(z’ T)

c+d cr+d
(i) @(wz, 1) = @(z, 7) for all we W,
(iv) @(z, 7) is a locally bounded function as Im 7 — co.

Indeed there is but one cusp to consider, and since all one-dimensional cones in
the fan X are W-conjugate to the projection of the ray R,  c ¥ condition (iv) is

sufficient, in the presence of (iii), to ensure holomorphy of ¢ along A4;.
’ J
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Given the root system R, the family of abelian varieties 4 2 C together with
the sheaves #™ and .#® still depends on the choice of the subgroup
I' = SL,(Z). For the moment let us write, more precisely,

Ar-pr_’ Cr

and likewise Jy,r for the spaces of Jacobi forms. Clearly Jy,s;,z may be
identified with the subspace

0] kmr)SLZ(Z) < Jmr

of invariant forms. In particular any given Jacobi form ¢ € Jyus.,z) induces
Jacobi forms

Or€Jmr

for all subgroups I' = SL,(Z) (of finite index). By abuse of language we say that
the ¢ obtained in this way do not depend on the choice of I'.

(3.5) We proceed to formulate the main result of this paper. Let

(k(0), k(1),...,k(r)

be an (r + 1)-tuple of non-negative integers. For each multi-index
o = (g, .. ., ,) (of non-negative integers) we then let

led = Y k(j)ay
ji=0
be the weight of a. The direct sum
S =@ A0

has the structure of a sheaf of ().-algebras in a natural way.

(3.6) THEOREM. Let R be a fixed classical (reduced and irreducible) root system
of rank r, but not of type Eg. Then there exists a basis

(@0 @15+ -5 @)

of W-invariant Jacobi forms, in the following sense.

(i) Each

w
©;€J iy mi)
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is a W-invariant Jacobi form of weight —k(j) < 0 and index m(j) > 0, and ¢;
does not depend on the choice of the subgroup I’ = SL,(Z).
(ii) The sheaf homomorphism

P =@ DD p, L™
a m=0

which is multiplication by f&f$'*---+ f¥ on the summand with multi-index a
is an isomorphism of (-algebra sheaves.

(iii) For each ceC, let |A,| denote the reduced fibre p~'(c) = C. In case c is not a
cusp we fix some t € H so that the restriction to |A,| of any Jacobi form ¢ € J,,,
is identified with a section

(pce HO(AC’ g("') ® (olAcl)'

Then the algebra

@0 HO(AC, g(m) ® QACI) = C[(‘Po)c, ce ey ((pr)c Te

is the I -invariant part of the polynomial algebra in the indeterminates (¢;).,
where T, =T if c is not a cusp, and T, =T n {11} else.
(iv) The algebra of W-invariant Jacobi forms is the polynomial algebra

J:,* =M*[(p0’ L) (pr]

in the indeterminates ¢; over the algebra of modular forms.

REMARKS. The indices m(j) of the basic Jacobi forms (j =O0,...,r) are the
coefficients of § written as a linear combination of the base roots ay, ..., a, of R.
This is already known from [Looijenga 1]. On the other hand, apart from
k(0) = 1, the integers k(j) turn out to be the degrees of the generators of the ring
of invariant polynomials

Crv1” = Crv),

i.e. the exponents of the Weyl group W increased by 1. Some reason for this fact
will be given in (5.22) below, but we do not know of a satisfactory a priori
explanation.

Geometrically, (i) implies that the family 4/W — C is a bundle of weighted
projective spaces (or their quotients by the action of {41}, if —1€T).
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(3.7) We begin the proof of (3.6) with some preparations designed to eliminate
case distinctions; the proof proper will be the subject of Sections 4 and 5.
We first note that for s > 3 the principal congruence subgroup

I(s) = {geSL,@)|g = 1 (mod s)}
acts freely on the upper half plane. Given the group I', we put
'=rnr@ and T'=rI/.

In the sequel while using our standard notation we add a “~” symbol to indicate
reference to I' rather than I'. We have a commutative square

wherein g and g are the quotient morphisms with respect to the action of the
finite group I. It follows from the definitions that for all integers k and m one has
the identities

MO = (q '/”(k))]" (q .//lk)r
Jim = @ T = @AY @ PN = (q,(5*M* @ Z™)

while on the global level

M, = HYC; 4% = ML

Jim = HO&; p* M+ ® §F = JT.
We now assume that ¢, ¢4, ..., @, are Jacobi forms for which parts (i) and (ii) of
Theorem (3.6) hold, with I" in place of I'. We show that then necessarily parts (ii),

(iii), and (iv) hold for I'.
Indeed the isomorphism

y @ ﬂ(h“——) @ (m)W

yields, upon application of g, and passing to I'-fixed spaces, an isomorphism

S =@ A & @b I = O pr™,
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which proves (i) for the group. On the other hand (iii) for T" clearly follows from
(ii) by restriction to the fibre while (iv) follows by taking global sections. Both
properties then follow for I' too, by passing to I',- and I'-invariants, respectively.

For the proof of Theorem (3.6) it therefore suffices to construct Jacobi forms
®o> @3- - -, @, Which, apart from (i), satisfy (ii) under the additional assumption
that I' = I'(3). In that case & is the symmetric algebra over the locally free sheaf
of O --modules

MOD MDD ... @ MO,

Since the sheaves p,.#™, and, a fortiori, the sheaves p, #™" are also locally
free by (2.16) the isomorphy (ii) will in turn follow from (iii) which now reduces to
the statement that for each ce C

@ HUA; L™ R, O
m=0

is the polynomial algebra C[(¢,).,...,(¢,).]- Note that the truth of this
statement is independent of the choice of I' = I'(3).

(3.8) By the preceding the proof of Theorem (3.6) has, in particular, been
reduced to the case of the group I = I'(3), to which we now stick. Denoting the
corresponding family of abelian varieties by 4 £ C again we outline the
remaining steps to be done in order to complete the proof of the theorem.

(1) We shall construct symmetric Jacobi forms ¢; on A which furthermore are
invariant under the group I' = SL,(Z)/T(3):

(pjer_V,fm,m(j) (j=0,1,...,7.

(2) We then show that for each ce C
@® HA; 2™ Q®,.C)
m=0 '

is the polynomial algebra C[(¢y)., ..., (®,).]-

4. Construction of Jacobi forms

(4.1) We begin with a digression on arrangements of divisors. Throughout 4
will denote an analytic Cohen-Macaulay variety, while .# will be a coherent
sheaf of Cohen-Macaulay ¢,-modules.
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DEFINITION. A type I arrangement (of divisors) on A is a finite set
{Yy,....Y,}

of effective Weil divisors Y; on 4 with the following properties.

(@ Y:= Z Y, is a Cartier divisor.

(i) For S < j < n one always has
dimY,nY,<dimA4 — 2,
and for 1 <i <j <k < n one always has
dimY,nY,nY, <dimA4 - 3.
In the sequel we abbreviate
=ZQG, Lj=ZLQO,.y,

etc.

(4.2) PROPOSITION. Let {Y,,..., Y,} be a type I arrangement on A, and put
Y =)"7_, Y. Then the canonical sequence of restriction homomorphisms

0-206,-> @ %4> D %

1<is<n 1<i<j<n
is exact, and therefore the corresponding global sequence

0> HYY; @ G) > @ HAY; L) > D HAY,nY; &)

i i<j

also is exact.
Proof. We put

=N (¥nY)

i<j

=Y\ U (%nYnY),

i<j<k

and let

U—2>Y and U,—>Y
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denote the open inclusion maps. By assumption Y\U, and Y\U, are analytic
subsets of codimension at least 1 and 2 in Y, respectively. Since Y is a Cartier
divisor on A the sheaf % ® () is a Cohen-Macaulay sheaf on Y. By an extension
theorem of Scheja, cf. [Siu and Trautmann] p. 36, Theorem (1.14), this implies
that the restriction homomorphism

g@@yqelt(a?@@yl Ul)
is injective while
LR G~ exZQG|U,)

even is an isomorphism. The former implies injectivity of
26> ® %

while the latter reduces the question of exactness at @),;.%, to the special case
when at any given point of A no more than two of the Y, intersect. Under this
extra assumption exactness at the term @), .%, is obvious. O

(4.3) More generally, we now will allow up to three divisors to intersect along a
codimension two subset of 4. In that case though, we shall impose conditions on
the arrangement as well as on 4 and .# that are much more restrictive in other
ways.

For A and % as above we put

B= {yeA

DEFINITION. A type II arrangement on A (with respect to ¥) is a finite set

y is a singular point of 4, or
%, is not a free 0, ,—module |’

{Y,.... Y}
of effective Weil divisors on 4 with the following properties.

(i) Y=Y Y;is a Cartier divisor.
i=1

(ii) For 1 <i <j < n one has

dmY,nY,nB<dimA-3,

and the set

B,i= {ye YA Y\ B Y; and Y] are not (smooth}

and) transverse at y
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also satisfies
dim B;; < dim 4 — 3.

(iii) For 1 €i<j <k <1< n one always has
dimY,nYnY,nY <dim4 - 3.

Given a type II arrangement {Y,,..., Y,} we further introduce the sets
Vi=Yn Y;\( U YkUBij>
i#k#j

(1 <i<j<n).Forl <i<j< k< nthe union of all irreducible components of
dimension dim 4 —2 in the analytic set

Y.nY;n Y, \(Bz v By, v By)

will be denoted V;. Both ¥;; and Vj; are constructible submanifolds of A of
dimension dim 4 —2.

(4.4) We let " denote the kernel of the restriction homomorphism

@Z"(‘DZ;

i i<j

already considered in (4.2). We now shall construct a subsheaf ¥" = 2 which
will turn out to comprise exactly those sections of the .%; that can be pieced
together into a section of ¥ ® 0.

Let us for the moment fix some point y € ¥;;. Since %, is a free ¢, -module we
may pick some trivialization

£,50,0 00,
In view of the definition of the manifold ¥}; we can find germs of vector fields
v,e(7Y),, v;e(JY),, and pe(TY)),
such that
v;+v;+0, =0 in(JA),

while none of v;, v; or v, is tangent to V; at y.
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DEFINITION. Let U = 4 be open. A section
§= (Sl,...,S")Ef(U) < G-) “Z(U)
i=1

belongs to ¥ (U) if for all triples (i, j, k) with 1 <i<j<k<nandallyeV; nU
the identity

v, d(ts;)) +<vj, d(ts))) + vy, d(ts)) =0 4.5)

hOldS in (0A,y @ ce @ 0A,y) ® @Vijky}"
To justify this definition we prove:

LEMMA. Given s, the validity of (4.5) does not depend on the choice of t nor on the
choice of the vector fields v;,v;, v,.

Proof. As to the independence of ¢, it suffices to show that the left-hand side of
(4.5) is an O ,-linear function of s. Thus let ue 0, ,. Then

du-ts) = u-d(ts) + du ® ts;

and since s;, 5; and s, restrict to one and the same germ in %, ® Oy, , the

contributions from the second terms add up to zero:

v, du @ ts;) +<v;j, du @ ts;» + vy, du @ ts)
= (v;+v;+ v, du® ts;) = 0.

Likewise, if v}, v}, v; is a second choice of the triple of vector fields then the
residue class of v} in 7V, ® Oy, , satisfies

vi=uv;+w

for some ue Oy, , and w;e(J V;),, and similarly
vi=utvj+wy, U = U U + Wy,

with the same u. Summing up we obtain

vl d(ts)) + <), d(ts)) +<vj, d(tsy)>
=u-({v;, d(ts)) + v, d(ts;)) + vy, d(ts))) + {w;+w;+w,, d(ts)).

Since w;+ w;+w, =0 the assertion follows. O
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(4.6) PROPOSITION. Let {Y,,..., Y,} be an arrangement of type II on A, and
put Y = ()i, Y. Then the restriction homomorphism

LR~ @D L
i=1

induces an isomorphism
LROSY.

Proof. If a local section s=(sy, .. ., s,) of ;% comes from a local section § of
Z ® 0, then it certainly belongs to ", and (4.5) just reflects the linearity of the
differential of ¢5 at y. Thus s is a local section of #". On the other hand, for the
same reason as in the proof of (4.2) the homomorphism

$®(9Y—>’V

is an injection; the point in question is its surjectivity.

Surjectivity may be verified stalkwise, and is settled by Proposition (4.2) at all
points ye A at which at most two of the divisors Y; (1 <i < n) meet. Of the
remaining points y we need consider only those which belong to some V;
(1 <i<j <k < n), again by the extension argument used in the proof of (4.2).

Thus let ye Vj,, and let s =(sy,...,s,)€¥",. We have to find an e %, ® Oy,
simultaneously representing

S;€%;

i sie%;,, and s,eZ .

Applying Proposition (4.2), at least we find a germ §;;€ %, ® Oy, that represents
s; and s;. We let s;; be the image

sije$y® 0}/‘ij’y

of §;.

In some neighbourhood of y the intersection (Y;u Y;) N Y, coincides with the
local divisor 2Vj; on Y,. Since se ¥}, by assumption, we have se ¥, and (4.5)
holds at y: these two facts together just mean that s;; and s, map to one and the
same germ in %, ® O,y,, ,. Another application of Proposition (4.2) now
provides an §€ %, ® Oy, as required. O

(4.7) We now assume a finite group W of automorphism of 4 is given, which also
acts on the sheaf .#. Thus with each we W there is associated an isomorphism

P L SWEF



Root systems and Jacobi forms 331

such that p, =id, and if ve W is another element then the diagram

L L (oW L = wHt P)

Pw w*p,
w*g

commutes. We consider an arrangement {Y;,..., Y,} on A4 (of type I or type II)

with the property that W permutes the divisors Y; transitively. Each we W,
sending Y; to Y}, say, then induces a linear isomorphism

Pw
Wy HO(Y; &) —— HOY; w* %) = HY;; £)

If W, ¢ W denotes the isotropy subgroup of Y; then projection to the first
summand clearly gives an injective linear map

w
H0<A; @ gi) - Ho(Yy; £ )"
Let again & be the kernel of

(‘B &> @ gij-

i i<j

(4.8) PROPOSITION. Sections se H(Y;; £,)"* which belong to the image of
HOA; X)W are characterized by their property that for all i (1 <i < n) and all
we W with wY, =Y, the sections

seHYY,;; <))
and

w,se HA(Y; &)
represent the same section in HY(Y, N Y; %;)).

Proof. The condition clearly is necessary. On the other hand if it is satisfied,
and if for 1 <i <j < n the automorphism w;e W sends Y; to Y;, and w;e W

sends Y; to Y;, then the condition applied to w:= w; 'w; shows that

WigS = W w,s€ HY(Y; &)
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and
wis€ HUY;; &)
restrict to the same section in H(Y;nY;; &;). Then s is the image of
(S, WaySs - - - » WayS) €HO(A4; XY 0

For repeated use later on we record the following special case, which is
particularly simple.

(4.9) PROPOSITION. Let {Y,, ..., Y,} be a type I arrangement on which W acts.
Assume that for each i (1 < i < n) there exists a w;e W such that

w;Y; =1, wilY,nY, = iler\Y,.,
and such that the homomorphism
L= L ® Oy s WL ® Oy ny = £y

induced by pw; is the identity. Then, with Y = X, Y, as usual, the restriction
homomorphism

HYY; £ @ O)* - HO(Y;; &,)"
is bijective.
Proof. The condition in the previous proposition, which clearly does not

depend on w but rather its coset wW, in W/W,, is satisfied with w = w,, for all
sections s€ H(Y;; £,)" . Therefore

HO(4; #) — H(Y;; 2"

is bijective, and the statement now follows from Proposition (4.2). O

(4.10) The infinite product

(1 _ eZni(lt + w))(l _ eZm‘(lt - w))

(1 _ e2nilt)2

CO(W, T) — (eniw —e —niw) ll:_)[l

converges locally uniformly for all weC and all te H, and thus defines a
holomorphic function

w:CxH - C.



Root systems and Jacobi forms 333
Clearly the limit

lim w(w, t) = 2i-sin w
T>100

exists, and is locally uniform in we C. We refer to w as the fundamental Jacobi
form though it is not quite a Jacobi form in the technical sense. We list the
functional equations satisfied by w; their verification is routine and therefore
omitted.

o(—w, 1) = —oW, 1)

ow+1, 1) = —ww, 1)

oW+1, 1) = —e 2"V gy(w, 7)
ow, T+1) = oW, 1)

ow/t, —1/7) = (1/1)- ™™ - a(w, 7).
We also note that the divisor of zeroes of w is the ‘lattice over H’
{w, 1) |weZ+Z}.

(4.11) We return to the set-up of Section 3, and of (3.8) in particular. Let
pel p-Vi,M

be an invariant Jacobi form of weight —K < 0 and index M > 0,and let Y < 4
be the divisor of zeros of ¢.

(4.12) PROPOSITION. For each k = 0 the inclusion Y < A gives rise to an exact
restriction sequence

0 Mg % 1T o > HUY; S ® 0)"T 0.

Proof. We pass from the exact sequence

0 — H4; #*) —» H(4; Fi—xm) = HY; Fi_ g ® Oy) - H'(4; M*)
to its WT-fixed part (this is an exact functor), and only have to prove

HY(4; 4T = 0.
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To this end we consider the Leray sequence of 4 5 C, which comprises the
sequence

0 - HY(C; p,#* - H'(A; #*) > H(C; R'p,#*) — 0.
By the projection formula this reduces to

0~ HY(C; 4" - H'(4; .#* - H°(C; #*® R'p,0,) — 0. 4.13)
Passing to W-invariants we have to study

HO(C; M* ®R'p,0,)" = HYC; M* @ (R'p,0,)").
By the corollary to Theorem (2.16) we have for each ce C

R'p, 0, @, C=H'(A4; 04)
If ¢ is not a cusp then this vector space identifies with

Hom(CQ, C),
which is a non-trivial simple W-module, cf. (2.13). As the representation type of a

finite group is locally constant the latter is still true if c € C is a cusp. In particular
H'(A.; 0,)" =0 for all ceC, and therefore

(Rlp*(gA)W =0.

On the other hand H'(C; .#*) vanishes for all even k > 0 by the classical theory

of modular forms since C = H/I'(3) is a rational curve, see e.g. [Gunning] p. 26.
For k odd we let

ci¢cr
be the quotient morphism and note
HY(C; M = H\(C/T; q, M9 = H(C/T; (g, M*").

Sinci: —1€eT the sheaf .#* admits no T-invariant local sections, and therefore
(q,#*)" is the zero sheaf. Thus

HY(C; #%F =0 forall k > 0.
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We now have proved that the WT -invariant part of the sequence (4.13) is trivial,
and the proposition follows. O
5. The individual root systems

(5.1) We now discuss the individual root systems R, and begin with the system of
type 4, (r = 1), using its standard realization in

RO = {zeR"*!|zo+z,+ - +2,=0},

see [Bourbaki] Planche 1. We define

sz 9 = [ ok, 7).

It follows from the functional equations satisfied by the fundamental Jacobi
form that a, . , has the properties listed in (3.3), and may therefore be identified
with an invariant Jacobi form

4 +1 e-]‘/—V(I;+ 1,1
For r=1 the divisor Y of a, is represented by the set

{z, 1) eCQ xH |z, e Z+1Z},

counted with multiplicity 2 (since z, = — z,). From Proposition (4.12) we read off
the exact sequence

0> ML - J¥T L HYY; 2 ® 0,)"T > 0.
In this sequence the term M§ vanishes since there are no modular forms of
weight 2 for the full modular group. On the other hand evaluation at
(0, 7)e CQ x H yields an isomorphism of the quotient term with

H(C; 0 = C.
This allows us to define a second Jacobi form

ageJ ngf

as the unique lift of the constant 1eC.
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REMARK. Up to a constant factor a, and a, are the weak Jacobi forms {ﬁo, 1
and ¢_ 2,1 of [Eichler and Zagier] p. 108. Indeed, making the identifications as
before one easily verifies

‘7;0,1 = 12a, and (5—2,1 = —a,.

Thus the quotient aq/a,, which is a meromorphic section of the sheaf .#® on 4,
is 1/4n* times the WeierstraB s-function, cf. loc. cit. p. 39, Theorem 3.6.

We now turn to the case r > 1, and define further Jacobi forms a,,
a,_4,...,0a,, a9 by induction on r. Let us specify the underlying root system R by
writing

A(R), Jim(R), W(R),...

rather than just 4, J,,,, W,....
Let Y = A(A,) be the divisor of the Jacobi form

already constructed. Y is a reduced Cartier divisor, and consists of r+1
irreducible components which are the W(A4,)-conjugates of the single divisor
Y, = A(A,) represented by

{(z, )eCQxH|z,eZ + 1Z}.
The embedding
(ZO> ZyseesZp-15 T) - (ZO’ ZyseeesZyp T)
identifies Y; with A(4,_,), the sheaf #(4,) ® Oy, with £ (A4, _ ), and the isotropy
group W(A4,)y, with W(4,_,).
Assuming r > 2 we are in the situation of Proposition (4.9): indeed the

transposition (1i)e W(4,) qualifies as the w; in the hypothesis of that pro-
position. Therefore for all k > 0

HO(Y§ Hi-r-11® (gy)w = HO(YI; Hi-r-11® (9}'1)Wl = JI?’—(fy—ill.)l(Arvl)a
and the exact sequence of Proposition (4.12) comes down to

Wi, 1)F

= %+1
0 M, — 4T (4,) - (4,-1) 0.
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Assuming inductively that Jacobi forms a,, a,_4,..., a,,a, with
a;e MU, ) (j=rr—1,...,2,0)

have already been defined we now obtain the same number of new Jacobi forms
on A(A,) by lifting the a;. We fix such liftings arbitrarily and write them

a;eJ¥ 1N (4,)
again, by abuse of language.

This procedure still works in the case r =2 which is (mildly) exceptional since
the three components of Y do not form a type I arrangement. Nevertheless this
arrangement still is of type II with respect to the sheaves %, Let p e JZ4(A4,)
be a symmetric Jacobi form on Y; =A(A4,), and let ¢ be the corresponding
W(A,)-invariant section of the sheaf . Let y be a point common to all
components of Y. The choice of a W;-equivariant isomorphism

t
(Fimly == Ouaz.y

makes each of the three components of #(®,) a function germ which is even. Thus
@ satisfies (4.5) since the differentials in question must vanish at y. Therefore ¢ is
in fact a section of ¥~, which in turn comes from H%(Y; £, ® 0y) by Proposition
(4.6). Applying this with a, and a, in place of ¢ we now apply Proposition (4.12)
and obtain liftings

a0 JYAIT(4,) and a,eJVEPT(4,).
(5.2) We next consider R of type B, (r > 2). The realization of [Bourbaki]
Planche I is in RQ = R” with Q =7, and since the unit vectors are short roots
the normalized invariant scalar product (?|?) is twice the ordinary one on R’,
compare (2.2).

For each r > 2 we introduce the Jacobi form

b, €IS (B)

by the formula

b2r(z9 T) = '1_11 (D(Zﬁ 1)2;
j=
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its divisor Y < A(B,) consists of r components all W(B,)-conjugate to Y; which is
represented by the set

{(z,©)eC"xH|z,€Z + 1Z}

and has multiplicity 2. We give these components the analytic structure which
makes them the primary components of the Cartier divisor Y; then Y, having no
embedded components, is the union of Y; and its W(B,)-conjugates in the ideal-
theoretic sense.

Since W(B,) contains the reflection at the hyperplane {ze RQ|z,=0} = RQ
which represents y, the W(B,)y, — invariant sections of #,,(B,) ® Oy, are simply
the W(B,_,) - invariant sections of #.(B,) ® Oy, where |Y;| denotes the
reduced space underlying Y;. Since this space naturally identifies with A(B,_,),
and the sheaf #,(B,) ® Oy, with #.(B,_,) we obtain, using Propositions (4.9)
and (4.12), an exact sequence

p b w(B,)T W(B,_ )T
0 Mf —— /%N B) —— 5% (B, )~ 0

for each k > 0. Reading B, = A, we use these sequences inductively to lift the
Jacobi forms ag, a,, by, b, - - ., by, -, from A(B,_ ;) to A(B,). Again we fix such
liftings

a,eJEPN(B),  a,eJVP)(B,)
and
by e JYEN(B) (2<j<n)

arbitrarily, keeping the same symbols to denote them.

(5.3) The realization of the root system of type D, (r > 3) in [Bourbaki] Planche
IV has the root lattice

0= {z=(zl,...,z,)eZ’ Z': z; = 0(2)}.

For all r, the spaces of W(D,)-invariant Jacobi forms J2’(D,) split into even
and odd parts

Jin (D) = P (D,) @ Ji™~(D,)

according to parity with respect to the outer involution o of R that changes the
sign of z, (or of any other component of z).
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For r > 4, we define the odd Jacobi form
4,eJ%0T- (D)

in terms of the fundamental Jacobi form w by

d.(z, 1) = Ijl (z;, 7).

The divisor Y of d, is reduced, and consists of the r conjugates under W(D,) of
the hypersurface Y; < A(D,) represented by

{(z, )eC"x H|z,€Z + 1Z}.
Thus Y, clearly identifies with A(D,_,), and #,(D,) ® Oy, with £.,(D,_,), but
now the isotropy group W(D,)y, includes the involution o as well as

W(D,_,) = W(D,). Applying (4.9) and (4.12) the usual way we obtain for each
k = 0 an exact sequence

0 M — 0D » SO, »o.
This sequence splits into
ML 3 g )
and
T (D) 3 IO (D, ),
In view of D3 = A5 the splitting uniquely defines three further Jacobi forms
a; e J¥2TH(D) (j=0,2,4)

for each r, by induction on r > 4.

(5.4) In this subsection R is one of the root systems considered so far, i.c. of 4, B
or D type.

(5.5) PROPOSITION. Fix any ceC, and let

dg, Az, A3,y ..., 0,44 (case A,)
ag, Ay, by, be, ..., by, (case B,) (5.6)

ag, Ay, Ay, dy (case D,)
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be the Jacobi forms constructed above. Then the residue classes of these forms in
the C-algebra

(__Do H(4; 2™ ®0.,C) > J 4y ®u,C

are algebraically independent.
Proof. Let ¢ stand for a, . ;, b,,, and d,, respectively, and assume an algebraic

relation

Fow=0 (57)

holds in that algebra, with p; polynomial in the remaining forms from the list.
Then p, vanishes along the divisor Y, = 4, of y, and by induction on r we thus
may assume p, is the zero polynomial. Since ¥ is not a zero divisor in
J ox ®p, C we may divide (5.7) by ¢ and obtain an algebraic relation of strictly
lower degree in . The claim will follow after at most d such steps. O

COROLLARY. For each ceC the Jacobi forms (5.6) represent a basis of the
complex vector space H(A; £ ®, C)”.

Proof. Linear independence is trivially implied by the proposition, so it
suffices to estimate the dimension of H(A,; £ ®., C)¥. This is done by the
exact restriction sequence

C-HA; £ ®, O - HAY; £ ® O )"
which in the three cases reads

C — H%A{A,);, £ ®q, C)"* —— HYA[A,_,); £ ®q,, C) 40
b r
C — HYA(B)); £ ®q,,C)"® —— HYALB,_); £ ®q,,C)" -

dy
C ) HO(AC(Dr), g @)(9,_-_c C)W(Dr) > HO(AC(Dr - 1), g ®(9m C)W(D'_ v+

respectively.
Clearly we have the further

COROLLARY. The direct image sheaf p, ¥ on C is

p*ng(g@e/”2®'ﬂ3@_”@‘/”r+l
LY 20D MOMD DM
p LY 20D M DM DM,

respectively. O
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We shall use this last corollary in order to construct Jacobi forms of index 2
on A(D,). First we prove in general:

(5.8) PROPOSITION. Let peJ V_V,IEM be a form of index M >0 and weight
—K <0,and let Y < A be its divisor of zeros. Let m > 0 be a positive integer, and
assume that p, %™ is a sum of non-negative powers of the line bundle 4. Then
the restriction sequence

0_>ka_"]k Km+M"’H(Y F- Km+M®(9Y) -0
is exact, for each k > 0.

Proof. We show that H'(4; #..)" vanishes. In view of the projection formula
the Leray sequence of p yields

0~ HY(C; M* ® py &™)~ H(4; Fim)— HO(C; M* ® R'p, L™)—0.
The W-invariant part of the first term is isomorphic to a direct sum

QID HY(C; .#*) withall k; >0

and therefore vanishes as C is rational and .# has non-negative degree. On the
other hand the quotient term of the sequence vanishes since R'p, %™ is the
trivial sheaf. O

Again specializing to the root system of type D, we have for each k > 0 an
exact sequence

w(D,)T ar )T )y
0 —— I (D) —— 172N (D) —— 1P D, ) —— 0

which splits into even and odd parts

0 —— JF@T+p)y ., JF®—py 0
- .
0 —— IO~ (D) —— g+ — 5 JFCI+p ) 0.

By induction on r > 4 the latter sequence allows to lift the Jacobi forms

a3eJW(A3)]"+(A3)

W(D,)T w(D,_ )T
dieJ”y (4) +(D4), L dx e-1€JZ §2r ;);(Dr~l)
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to even Jacobi forms on A(D,). We fix such liftings and denote them
ce€J"OIHD), ... 0, €IV SNS D).

(5.9) PROPOSITION. For each ceC the residue classes of ay, a,, as, d,, c,
Cgs--»Cay—2 in the C-algebra

@ HAs; £ 0, €) = J (D) @1, €

are algebraically independent.
Proof. This is the same argument that proved Proposition (5.5). O

(5.10) So far we have constructed, for each of the root systems of types 4,, B, or
D,, an (r+ 1)-tuple of symmetric Jacobi forms which for each ceC defines a
weighted homogeneous embedding of the polynomial algebra

C[T()’ ce T;] S @ HO(Ac’ ggm))W,
m=0

with Z =™ ®, C. We must show that this embedding is surjective. To
this end, again it suffices to estimate the dimensions of the C-vector spaces
H%A,; £™)¥, which is done in a straightforward way by induction on r > 1
and m > 0, using the exact sequences
HO(A(A,); 2P s HO(A(A,); L+ )P
HO(A(Ar— l)c; $£m+ 1))W(A'- l)’
HOA(B,); L)) — HO(A(B); £ V)P
HO(A(Br— l)c; gﬁm*- 1))W(B’_l)a

HOAD,);; ™)) —“, HO(A(D,),; Zm* Dy ®n

—— HYA(D,_);; £ V)P0,

This completes the proof of the assertions in (3.8) for the root systems R of type
A,, B, and D,.

(5.11) For the remaining root systems save Eq, E,, Eg the corresponding
assertions follow easily from those already proven. Indeed, if S is a root system
of type C,, F, or G, then we may identify the root lattices Q(S) and Q(R), with R
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of type D,, D,, A, respectively. If this identification is made the Weyl group W(S)
becomes the full automorphism group Aut(R) in all cases but C, where W(C,) is
generated by W(D,) and the involution ¢ introduced in (5.3). We thus obtain the
global invariants easily from the identity

JVON(S) = JWRTRWEWR)
while for each ce C

T 3 2 _Twesywr)
D HAS); 27T = [ @ HYAR); iﬂﬁ"")W(R)r]
m=0 m=0

Turning to the three particular cases we have
Jﬂc’)f(cr) = Jfg(eb')f+(Dr) = Ml:[%a Ay, A4y Cey Cgy -+ Cop—25 C2p)

with ¢,, e J¥$BX(B,) corresponding to a2 (r=3) or to d2 (r > 3). Similarly
THEN(G,) = TN (4,)

is the subalgebra of Jacobi forms of even weight, i.e.
JLV,.(:GZ)r(Gz) = Ml:[ao, as, Ce

with cseJ V_V(fi)f(Gz) corresponding to a3.
Finally, to settle the F, case, we have to determine the action of the group

W(F,)/W(D,) = Aut(D,)/W(D,) ~ Sym(3)
on the algebra

JLV=|(=D4)]:(D4) = M:[aO’ a23 a4’ d4’ cﬁ]‘
We know that ay, a,, a, and ¢ are even (i.e. invariant) forms with respect to the
involution ¢ € Aut(D,), while d, is odd. Since the divisor of zeros of d, clearly
fails to be stable under the full group Aut(D,) the line Cd, = J¥PPI(D,)is not an
invariant subspace of J ’fff 2I(D,), and this implies that

TV (Dy) = Ca, @ Cd,y

is a simple Sym(3)-module. On the other hand Sym(3) acts trivially on

JYPIN(D,) = Ca,,
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and the decompositions

JHPI(D,) = Cao ® M5 JYET(D,)
TS (D4) = Ceo @ ap I (Dy)

show that a, and ¢4 can be made Sym(3)-invariants by adding suitable linear
combinations of a, and d,. Since the algebra of invariants of the representation
of Sym(3) as the dihedral group on Ca, @ Cd, is C[a2 + d2, a,d2] we conclude

inF‘)r(F«t) = Ml:[am as, e fo» f12]

with f,e JYEST(F,) and f,,e JYEIN(F,) corresponding to a2 + d2 and a,d?
respectively.

(5.12) We turn to the root systems of type Es and E,. Rather than with
Bourbaki’s representation, we prefer to work with the realization of these root
systems in the Picard group of a del Pezzo surface. For 5 < r < 8 we thus let
Pic(X) ~ Z'*! denote the Picard lattice of a smooth del Pezzo surface X of
degree 9 — r. We let (?|?) be minus the intersection from on Pic(X). If k € Pic(X)
denotes the canonical class of X then the orthogonal complement

O(R) = {x€Pic(X)| (x|K) = 0}
is the root lattice of a root system
R ={xeQR)|(x|x) =2},

which is of type Ds, Eg, E, Eg respectively. The Weyl group W(R) identifies with
the group of isometries of Pic(X) fixing k. These and other details concerning the
Picard group of a del Pezzo surface are conveniently found in [Demazure 2].

The finitely many exceptional classes jePic(X), ie. those with
(jlj) = (j|x) = 1, are each represented by a (unique) exceptional curve on X
which we shall refer to as a line on X. In the case r = 6, to which we now turn, X
is a smooth cubic in P3, and the lines are the famous 27 lines on X in the
ordinary sense of the word.

If j e Pic(X) is one such line the orthogonal complement

Q;={zeQl(zlj) =0}
is spanned by the set
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which is a root system of type Ds. Both the isotropy group of j and the
normalizer of R in W(R) coincide with the Weyl group W(R;) ¢ W(R).

The set of pairs (i,j) of exceptional classes consists of two W/(Eg)-orbits:
Firstly, there are pairs (i,j) such that the corresponding lines are skew, i.e.
(ilj) = 0. In this case one has i — jeR, and the reflection associated to i — j
swaps i and j, hence Q; and Q;, while it restricts to the identity on Q; n Q;. The
second W(Eg)-orbit comprises pairs (i, j) such that the corresponding lines on X
meet. In that case there is a unique further exceptional class k e Pic(X) such that
the lines corresponding to i, j, and k form a triangle on X:

(k) = @ilk) = (ilj) = —1.

i — j is the sum of two orthogonal roots « and o'. The product we W(Eq) of the
associated reflections swaps Q; and Q;, and leaves Q, invariant. The root system

is of type D, and generates the lattice
Q;=0n0=0:n0=0:nQ;

The inclusions of Q;;in Q;, Q;, and Q, realise the three possible extensions of the
Dynkin diagram D,:

If suitable identifications are made the restriction of w to Q;; becomes the unique
diagram automorphism of D, that extends to D5 under the inclusion R;; & R,.

(5.13) Using the fundamental Jacobi form w we define a function

627(2, T) = I—[ (D((ZI]), T)a

j

the product is taken over all exceptional classes je€ Pic(X). A straightforward
verification shows that

€7€ JV—V%S,){(Es)
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is a symmetric Jacobi form.
We let

r=%y,

be the divisor of zeros of e,, where again j runs through the set of exceptional
classes in Pic(X). We arbitrarily single out three of those classes j that define a
triangle on X, and denote them j = 1, 2, 3. We also fix an element w; e W(E) for
each such j, with

wy =1eW(Es) and w;(j) = 1ePic(X).

The inclusions
012c0,<=0

considered in (5.12) then define canonical embeddings
A(D,) o A(Ds) ~ Y; o A(Eg).

We must determine which symmetric Jacobi forms

¢€ Jﬂbs)r(l)s)

have symmetric extensions over Y. After the choice of the w; each
@ €J ZV,,SD (D) determines a section

((pj)e @ HO(Yj; j**(E6) ® (9Y,~)>

J
and as a necessary condition for extendability we note:

(5.14) PROPOSITION. Let A" be the kernel of the sheaf homomorphism
@ F xx(E6) ® (9)',» - @ F xxlEe) ® (OYij
J 1+

as in (4.4). Then (¢)) is a section of A" if and only if the residue class

22 iViD")r(D‘t)

of @, is invariant under the full automorphism group Aut(D,) = W(F,).
Proof. This follows from Propositions (4.8) and (4.9), in view of the discussion
in (5.12). ]



Root systems and Jacobi forms 347

We restate this proposition in terms of the already known structure of the
algebras of Jacobi forms concerned. We put

R = Ml:[am ay, Ay, ds, Cg, Cg] = JmDs)f(Ds),

R, = Mz[ao’ ay, ag, Ce; Cg] = R;
thus R, projects isomorphically onto

R = R/dsR.
We further introduce the subalgebra

S= MI:[%a as, Ce, f3, f121 = JﬂF‘)f(FO = RW&F;
recall from (5.11) that

f8=ai+di=ai+08

_ 2 _
fi2 = a4di = ascs.

The exact diagram

0—>R—%3R—"sR—0
0 > R > S >§——0

defines the subalgebra
S=n"1S) <R,

and what (5.14) assures is that the Jacobi forms ¢, € S are exactly those with (¢;)
a secton of . We next have to determine those ¢, € S with (¢;) in fact a section
of the subsheaf ¥~ = " introduced in (4.4). Since triple intersections Y, N Y; N ¥,
have codimension three in A(Eg) unless i, j, k form a triangle on X the quotient
sheaf J¢'/¥" is supported on Y;, = Y; n Y, and its W(Eg)-conjugates.

(5.15) The algebra S = R is the isomorphic image under R % R of

So = Mi[%a a,, Ce, fs, f12] = Ro.
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In view of the fact that R, is the free S,-module with basis {1, a,, aZ} we may
decompose S as an Sy-module, as follows:

S = SO @ Sods @ Soa4d5 @ Soaids @ Rd%.

The subalgebra S, = J iV,,ED I(Ds) is even with respect to the reflection of RQ, at
the hyperplane RQ,,; in particular for each ¢, €S, the differential d¢, is
everywhere zero along CQ, ,. Therefore (¢,) is a section of ¥~ for all ¢, €S,,and,
for the same reason, for all ¢, € Rd2.

We shall now show that (¢;) is a section of ¥ if ¢, = ds or ¢, = a,d;, but not
if ¢, = a2ds.

Let te W(E;) be an element of order 3 that induces a cyclic permutation on
the set of exceptional classes {1,2, 3} = Pic(X). Then for each vector v, e CQ,
the sum

v; + tvy + t?v, € Vo(Eg)

belongs to CQ,,. The condition (4.5) on ¢, that (¢;) be a section of ¥~ therefore
reads

(v, de@1) + {tvy, di@1 2t ™)) + <t?0y, day(@y°t72)) =0
for all xe CQ,, and all v, e CQ,. The left hand side reduces to
o1, de@y > + vy, dix @y ) + <0y, di2 01D
=<0y, dy @1 + dp @1 + dpy @D
If ¢, is a multiple of ds, say
¢y =Y ds

then the derivatives of ¢, normal to CQ, , are proportional to the values of the
function y - d,. The condition for (¢ ) to be a section of ¥~ thus comes down to

(Yd)(x) + (Yd,)tx) + (Wd)t*x) =0 for all xe CQ,,.

This in turn means that in the decomposition of J¥P+I(D,) into t-weight spaces,
the Jacobi form d, has no component in the t-fixed part.

We have to check whether this last condition holds with ¥ = 1, a,, and a,
respectively. The subgroup of W(E¢) spanned by the elements ¢ and w is the
symmetric group Sym(3), and we know from (5.11) that the Sym(3)-module
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generated by the Jacobi form d, is the plane
Ca, @ Cdy = JEPT(D,);

this is the unique simple Sym(3)-module of dimension 2. If V,, V., V_ denote the
simple representations of the cyclic group (t) (¥, trivial) then

Ca,®Cd, =2V, ®V_

as (t)-modules. Therefore ¢, = ds does determine a section (¢;) of ¥".
Turning to ¥ = a,, we note that a,d, is contained in the Sym(3)-module

Cai (’B Ca4d4 (‘B Cdi.
Its simple components are

C(a +d?) and C(aZ— d3) @ Ca,d,,
and as a,d, belongs to the latter it has no {¢)-fixed part. Thus ¢, = a,ds also
determines a section (¢;) of ¥".

Finally, to study the case = a2 we decompose the Sym(3)-module

Cal ® Cazd, ® Ca,d2 @ Cd3:

it is the direct sum of a two-dimensional and two one-dimensional represen-
tations. Since a2 + d3 is an invariant the former must be the simple submodule

C(ai + di)a, @ C(a] + d3)d,.
The element yd, = a2d, does not belong to this submodule, and therefore has a
non-zero component in the subspace of {¢)-fixed elements. This proves that

a2ds does not lead to a section of ¥".
In view of Proposition (4.6) we now have proved:

(5.16) PROPOSITION. Restriction from Y to Y, identifies

@D HUY; Fom ® Op)VET
k,m

with the subalgebra

S0 @ Sods ® Spasds @ Rd3 = R = J:V}:DS)I_—(DS)‘ O
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REMARK. The same reasoning would have shown the analogous result for
each fibre of the projection Y & C.
The structure of this subalgebra is given by
(5.17) PROPOSITION. The algebra
So @ Sods ® Soayds @ Rd3
is generated over M 1: by the Jacobi forms
Ao, 2, Ce» ds, €9, f3, and fi,
with
eg = auds

and
fos=ai+cs
J12 = aucq
as above. These generators are subject to the single generating relation

e3 —dlegfs +d3f;,=0

inJ_jq6
Proof. Let S’ = R be the subalgebra generated by the elements listed. Then
clearly

So @ Sods ® Spasds <= S'.
On the other hand
Rd3 = Ro[ds] d3,

and since R, is spanned, as an S,-module, by 1, a4, and a2 it follows that S’ also
contains Rd?. This proves that the elements from the list generate. The ideal of
relations is principal because ao, a,, cg, ds, fg, and f;, are algebraically
independent. The second part of the proposition now follows easily. O

(5.18) We have the following proposition, which complements (4.12) and (5.8):
(5.19) Let (peJVf’;M be a form of index M > 0 and weight —K < 0, and let
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Y < A be its divisor of zeros. Assume that the rank r of the underlying root
system R is at least 2. Then for all m < M, and any k € Z restriction from 4 to Y
gives an isomorphism

ka = HO(Y9 fkm ® (OY)
Proof. The exact sequence

0- HI(C; MEHK ®P*$(M~M)) - HI(A; Frrkm-m)
- HYC; M*** @ RpL L™~ M) 0

is trivial. O

Since ay, a,, cq, ds, €9, fs, and f;, all have index at most 3 we may use (5.19) in
order to obtain (unique) liftings of these forms in J¥EJT(E,). In this latter
algebra we have a relation

e3 —dlegfs +difi, = A ey,

where A is a Jacobi form of weight and index 0, i.e. a constant.

(5.20) PROPOSITION. A # 0, and for each c € C the forms ay, a,, cg, ds, €q, fs,
f12 have algebraically independent residue classes in

»@0 HO(AC; pm ®@C‘t C)W = J**(E6)W ®M* C.

Proof. Let
J [y J**(E6)W ®M* C

be the graded subalgebra generated by those classes. It is proved in [Looijen-
ga 1] (4.2) that for generic c e C, the algebra J}, ®,,, C is a polynomial algebra
on homogeneous generators, their degrees being the indices of a,, a,, cg, ds, €,
fe f12 (e 1, 1,2, 1, 2, 2, 3). Since by (5.19), J contains at least J%,, ®,, C for
m < 6 the classes of a, a,, cg, ds, €q, f3, 1, also generate the polynomial algebra
JY . ®u, C (ceC generic). In particular we conclude 4 # 0.

We now let ce C be arbitrary. In view of the structure of

D H(Y; £ ® 0y),

see (5.17), every relation between ay, a,, ¢, ds, €, fg, f1, in J is divisible by
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e3 — dZeq f3 + d3 f1,, which is not a zero divisor in J because A # 0. From this it
follows by induction that there are no non-trivial relations at all. dJ

Estimating the dimensions of the graded pieces as in (5.4) we now obtain that in
fact

— w
J=J,(E)" @y C
for each ce C, and that therefore the symmetric Jacobi forms

w w w
ageJoy, az€J7, 1, dseJ%5

w w w
Ce€J 62, €0€J g 5, fg€J g 5,

f12€-]v1’12,3

have all the properties stipulated in (3.8). This completes the proof of Theorem
(3.6) for R of type Eq.

(5.21) We finally treat the case of R of type E,. The 56 “lines” on the del Pezzo
surface of degree 2 occur in 28 pairs which are invariant under the symmetry
—1e W(E,). We arbitrarily pick one representative j from each pair and form
the product function

e5(z, 1) = n o((z] j), 7).
J
Again this is seen to be an invariant Jacobi form

56 JVEE (E).

Let Y < A(E,) be its divisor of zeros; then the components of Y are isomorphic
to A(E¢), and form an arrangement of type I on A(E,). Since —1e€ W(E,)
stabilises each component only Jacobi forms of even degree can be extended
from A(Eg) to A(E,). The Weyl group W(E,) acts doubly transitively on the set
of components of ¥, and their intersections give rise to no further obstruction to
extending Jacobi forms symmetrically. We therefore have

DHY: £1n® O = @ JLEN(E,
ke;/':n

If we put

_ g2 _ _ 2
€10 =4ds, €14 =dseq, €15 = €5
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the right hand side comes down as the algebra

T
M, [ao, a,, cs, €10, €145 €18, S35 f12]
with generating relation
o — 2
€10°€18 = €j4.

Exactly the same reasoning as in the E¢ case allows to lift the generators to
Jacobi forms on A(E,):

aoeJg, ael%,,,
c6€J%62 €10€J 102 fe€J s
914EJY14,3, f12€J 12,3
es€J” 5.4
It also follows as before that these forms are in fact algebraically independent

and generating along each fibre of 4 % C.
This completes the proof of Theorem (3.6). d

(5.22) REMARKS. The inductive procedure we have followed in order to
construct W-invariant Jacobi forms would also serve to construct basic
invariants for the linear action of W on the vector space ¥ (excluding the root
system of type Eg). To some extent this explains why the weights of the basic
symmetric Jacobi forms correspond to the degrees occurring in the linear
invariant theory of the Weyl group.

We do not know to what extent Theorem (3.6) holds for R of type Eg. Since
the root lattice of Eg is unimodular the Riemann theta function associated with
that lattice is a symmetric Jacobi form

0eJ Y EI(Eg)
which is seen to span the vector space
H(A;; £ ®q,,C)"

for each ceC.
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