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Introduction

Let R be a (classical) root system, and let Q denote its root lattice. For each
elliptic curve E = C/(Z + Z03C4) the Weyl group W of R acts on the abelian variety
A = Q z E. The quotient morphism A ~ A/W of this action plays an important
role in understanding deformations of simply-elliptic surface singularities
[Looijenga 2].

In fact it was for that purpose that the W-variety A was first introduced in
[Looijenga 1]. On A there is an essentially unique minimal ample line bundle 2
on which W acts too. The algebra of W-invariant sections of 2 and its tensor
powers has been studied in loc. cit., [Bernshtein and Shvartsman], and
[Saito 1, 2].

Later, Looijenga reconsidered the same situation in the more general setting
of affine root systems [Looijenga 3]. In that context A naturally appears as a
family AH of abelian varieties, parametrized via i by the complex upper half
plane H. It was also noted by Looijenga that the natural action of the modular
group SL2(Z) lifts to that family, as well as to the ample line bundle 2H on AH .
Some aspects of that action have been discussed in the work of [van Asch] and
[Kac and Peterson].
The purpose of this paper is to study the invariant theory of AH and 2H with

respect to the action of the modular group (or a subgroup r of finite index) as
well as of W We form the quotients by r and, as a first step, seek to extend the
family

over the cusps of r. This is achieved in a natural and quite explicit fashion, using
a toroidal embedding technique from [Wirthmüller 2].
The invariants that we then study form a bi-graded algebra over the ring of

modular forms, graded by weight (referring to behaviour with regard to r) and
index (referring to the appropriate power of 2). We call these invariants Jacobi
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forms since in the special case when R is of type Al they reduce to (weak) Jacobi
forms in the sense of [Eichler and Zagier].
We succeed in determining the algebra of invariants for all types of root

systems excluding E8. The invariant algebra turns out to be a polynomial
algebra over the ring of modular forms, with generators that do not depend on
the particular choice of the group r.
The result has an application in singularity theory, to deformations of fat

points in the plane with defining ideal

This complements the paper [Wirthmüller 1] and will appear elsewhere.
The author is grateful to the referee, who suggested various improvements to

Section 1.

The paper is organized as follows:

1. Toroidal embeddings and reflexive sheaves
We describe a class of toroidal embeddings associated with certain properly
discontinuous group actions on open cones. This class is sufficiently general for
our purposes but on the other hand explicit enough to enable us to compute the
cohomology of certain reflexive sheaves that arise naturally in the same context.

2. A family of abelian varieties
We introduce in detail the family AH ~ H referred to at the beginning, as well as
its compactification. We also describe the line bundle YH and its extension as a
reflexive sheaf. Using the results of Section 1 we then compute the cohomology
of that extension.

3. Jacobi forms
We define the notion of Jacobi form and formulate our main result concerning
the structure of the invariant algebra, in Theorem (3.6).

4. Construction of Jacobi forms
We first discuss some auxiliary results pertaining to the problem of extending
sections of a sheaf that are given on some arrangement of divisors. These results
facilitate an inductive construction of Jacobi forms, by picking a suitable sub
root system of R of smaller rank, and extending Jacobi forms associated with
that sub root system and its conjugates under kK

5. The individual root systems
The construction prepared in Section 4 is carried out on a case-by-case basis,
and thereby the proof of the main theorem is finally achieved.
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1. Toroidal embeddings and reflexive sheaves

(1.1) Let V be a finite dimensional real vector space, and let A c V be a lattice
with rank A = dim K

DEFINITION. A set E consisting of cones in V is called an admissible fan if the
following hold:

(i) Each (J E 1: is a relatively open A-rational polyhedral cone; it does not
contain any affine lines.

(ii) If 6 E E then each face of a belongs to E.
(iii) If 03C3 E E and T e S then à n 1-r is a union of faces of 6.

(iv) The interior of

is an open convex cone 7 c V, and c 7 for each J E E.

(v) If C c V is any closed A-rational polyhedral cone with C c II:I then C
meets but a finite number of a E E.

Note that if E is an admissible fan then by (iv), each J E E is either contained in I
or else is disjoint from it. By property (v) then {03C3 ~ I | 03C3 ~ 03A3} is a locally finite
covering of I.
For any a E X we use the symbol St(Q) to denote the star of a (with respect to

E), i.e. the union of all z E E with a c i. While St(03C3) need not be open in II:I the
intersection St(Q) n I is always open in 1. We also record the following property
of the star.

LEMMA. For each creX and any y~I one has

Proof. We choose a closed A-rational polyhedral cone C’ c 1 u {0} contain-
ing y in its interior, and pick some point z~03C3~. Then the convex cone
spanned by C’ and {z} is a closed A-rational polyhedral cone contained in JY-1.
By (v) it meets only a finite number of 03C4~ E. Since the parametrized line segment

maps into C the point (1- t)y + tz is contained in one and the same i E E for all
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t E (0, 1) sufficiently close to 1. We necessarily have r E St(u), and therefore

for those t. D

Let us agree to call a subset (D c E of an admissible fan closed if i ~ 03A6 implies
that all faces of 03C4 belong to 03A6. We put

and write

by abuse of language.
Writing Vc = C R V we let for each such 4Y

denote the torus embedding determined by 03A6 (i.e. by the collection (à 1 u E 03A6}, in
the sense of [Kempf et al.] p. 24). We put

and let

denote the open subset comprising all points that can be represented by vectors
from V + iI c Vc.

(1.2) Let 03A3 be an admissible fan, and let again I denote the interior of IMI.

LEMMA. Let r c GL(V) be a subgroup such that A and E are r’-stable. Then r
has the Siegel property:

For any two cones u E 03A3 n I and i E E one has 03C3 n yi = Qf for all but a finite
number of y Er.

In particular r acts on E n 1 with finite isotropy groups 039303C3 c r.
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Proof. Let 03C3 ~ 03A3 ~ I; then St(03C3) is the union of a finite number of 03C4 ~ 03A3 ~ I.
Thus the set of all indivisible lattice points that span a one-dimensional face in
St(u) is a finite subset of A which contains a basis of V. Since the isotropy group
039303C3 preserves this set r (f is finite.

Let now i ~ 03A3 be arbitrary. Whenever yi meets 03C3 then 03C3 c yr and therefore

yi c St(u). There are only finitely many cones with this property, and all are
contained in 7. The Siegel property follows since 039303C4 is finite. D

(1.3) PROPOSITION. Assume that 03A3 is admissible, and that A and 1 are F-
stable. Then the (discrete) group F acts properly on I(A, 03A3). In particular the
topological quotient I(A, 03A3)/0393 is a locally compact Hausdorff space.

Proof. Let v, v’ E I(A, E); in order to prove properness we construct neighbour-
hoods U of v and U’ of v’ such that U n y U’ = 0 for all but a finite number of
y E r. The point v belongs to the stratum V/( + 03C3) c T(A, 1) for some Q ~ 03A3,
and is represented by z = x + iy ~ V + iI, say. In view of Lemma (1.1) we may
choose y in St(03C3) n I. Let 03C4 ~ 03A3 n I be the cone containing y; then the set

represents an open neighbourhood U of v in I(A, E). Similarly, a neighbourhood
U’ of v’ is defined. The Siegel property then implies Un y U’ = 0 for all but
finitely many y e r as required.
Thé last clause of the proposition holds since I(A, 1:) is locally compact

Hausdorff, and the action of r is proper. D

COROLLARY. Under the assumptions of the proposition I(A, 1)/F inherits a
quotient analytic structure from I(A, E), and in this way becomes a normal Cohen-
Macaulay analytic variety.

Proof. By [Kempf et al.] p. 52, toroidal singularities are normal and Cohen-
Macaulay. Both properties descend to the quotient. D

(1.4). We shall construct certain reflexive analytic sheaves of rank one on the
quotients I(A,1:)/r. They arise from the following type of data.

DEFINITION. Let E be an admissible fan. A characteristic triple (03C0, b, 03BB) for 03A3

consists of an epimorphism

of lattices with kernel rank one, a preferred generator b E ker 1t, and, finally, a
characteristic section
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The latter is by definition a section of 03C0 :  ~ V satisfying the two axioms:

(i) For each Q e X the map Â |03C3 is the restriction of a linear map from Ra to el
and

(ii) 03BB(03C3 n A) c Ã for each 03C3~03A3 with dim 0" = 1.

With each characteristic triple (03C0, ô, A) we associate a sheaf L(03C0, ô, A) on T(A, 03A3)
as follows. Let I c v denote the interior of JY-1 and put I = 03C0-1(I) c In V,
consider the set of cones

where

(R+ = (0, oo)). This Ë is an admissible fan with respect to Ã, and I is the interior
of ||. In particular we have torus embeddings

and the epimorphism x induces morphisms of varieties

also denoted x by abuse of language.

NOTATION. Let X be an admissible fan. Then for each r c- 1 we put

and for each d c- N,

clearly these are closed subsets of 1:.

LEMMA. Let (n, b, Â) be a characteristic triple for the admissible fan 03A3, and let
03A6 c 03A3 be an arbitrary closed subset.
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Then the inverse image of T(A, (03A6) under T(A, 03A30)  T(, 03A3) is T(Â,,bo) where

If the characteristic section A has the property

then the restriction

is an algebraic C*-principal bundle.
Proof. The first statement is obvious. To prove the second, we choose for each

03C3 ~ 03A6 a linear extension Aa of Â 1 a- that sends A into Ã. Writing C* = T(Z) we
have an algebraic isomorphism

which is a trivialization of T(A, ilio) h T(A, (D) over the affine open subset

T(A, 03A303C3). If J’ e O is another cone the corresponding trivializations differ over

by an automorphism of T(A, 1:;’(1 n which is a translation on each fibre.
n

The lemma shows in particular that

always is a C*-bundle; we let 2’ be the sheaf of local sections of the associated
line bundle and put

where j: T(, 03A31)  T(, 03A3) is the inclusion.

DEFINITION. We refer to L(03C0, ô, A) as the reflexive sheaf associated to the
characteristic triple (n, ô, Â).
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(1.5). We collect a few properties of the sheaves 2(n, À, ô) which are immediate
consequences of the way they are constructed.

(i) Let (03C0, ô, Â) be a characteristic triple. Any splitting of the exact sequence

will identify the characteristic section A with a certain real-valued function y on
111. If i: T(A) 4 T(, 03A3) is the inclusion then 2(n, ô, A) will appear as an (!JT(A,1:f
submodule sheaf JIf of i*T(). The space of sections of that sheaf over T(A, 03A303C3)
is

where A = Hom(, Z) denotes the lattice of characters of T(A). In the

terminology of [Kempf et al.], -4Y is the complete coherent sheaf of T(A)-
invariant fractional ideals characterized by the function ord JI which is the
convex interpolation of IL on |03A31|, see loc. cit. p. 29. This fact may serve as a

characterization of the class of sheaves that can be obtained from characteristic

triples. It also proves that 2(n, ô, A) is a reflexive sheaf of rank one indeed, as
suggested by our terminology.

(ii) 2(n, ô, Â) restricts to an invertible sheaf over T(A, 03A6) (03A6 c 03A3 a closed

subset) if and only if 03BB(|03A6| n A) c Â holds.
(iii) Let us call two characteristic triples (03C0, ô, À) and (03C0’, b’, Â) isomorphic if

there exists a linear isomorphism   À’ such that n’ 0 ç = n, ~(03B4) = 03B4’, and
~°03BB = A’. Then isomorphic triples give rise to isomorphic sheaves on T(A,1:).

(iv) If m is a non-zero integer then

is isomorphic to the reflexive hull of the mth tensor power 2(n, ô, À)m (m &#x3E; 0)
respectively of (2(n, b, A) v)lml (m  0).

(v) The action of T(Â) on itself by translation induces on action of T(Ã) on
the bundle

as a group of bundle equivalences, the action on the base being through the
homomorphism T(A) ~ T(A). Therefore, for each 6 e E the torus T(A) acts on
the space of sections of L(03C0, 03B4, A) over T(A, EJ. Writing S = L(03C0, ô, 03BB) we have
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a decomposition

into T(Â)-weight spaces, indexed by the character lattice A v = Hom(A, Z). We
claim that

while H0(T(, 03A303C3); 2)’ is trivial for all other 1 E Ã v. Indeed the kernel of the
homomorphism T(Ã) ~ T(A) acts with weight 1 on all sections of T(Ã) ~ T(A),
and for given 1 E Ã v with 03B4, l = 1 the unique section of Â ’ A with image ker 1
represents a generator s, E HO(T(A); 2)’. This section s, is regular on T(A, 03A303C3) if
and only if l°03BB  0 holds on J. The resulting decomposition

is just (1.6) in an invariant guise.
For later use we record the following facts.

(1.8) PROPOSITION. Let (03C0, ô, A) be a characteristic triple.

(a) For each 03C3 e E there exists an integer m &#x3E; 0 such that the reflexive hull of
L(03C0, ô, A)m is invertible on T(A, Ea).

(b) L(03C0, ô, A) is a Cohen-Macaulay sheaf.

Proof. (a) follows from (ii) and (iv) by choosing m sufficiently divisible so that
03BB(03C3 n A) is contained in À + (1/m)Z03B4.

Likewise, to prove the local property (b), we may work over T(A, 03A303C3). If we
determine m as in (a) then

Thus the sheaf

is invertible on T(mA, 03A303C3), in particular it is a Cohen-Macaulay sheaf there. If q
denotes the quotient morphism
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corresponding to the exact sequence

then we have

on T(, 03A303C3). The latter sheaf is a direct summand of a Cohen-Macaulay sheaf,
and the assertion follows. D

(1.9) In this subsection we fix an admissible fan 03A3 in V, and let I denote the
interior of |03A3| as usual. For any closed subset (D c 03A3 we define

As the latter description shows I(A, 03A6). is an algebraic subscheme of T(A, 03A6)
rather than a mere analytic space. Note that I(A, 03A6). need not be of finite type
though it always is so locally.

Let now (À h A, ô, A) be a characteristic triple for E. Following the procedure
described in [Kempf et al.] p. 42, the (algebraic) cohomology groups Hi(I(A, 03A6).;
2(n, Ô, 03BB) Q I(,03A6).) can be computed combinatorially. To this end we put, for
each character l~v with 03B4, l = 1

(1.10) PROPOSITION. For each 1 EÃ v with (b, 1) = 1 there is a natural additive
isomorphism

Proof. Almost verbatim that of loc. cit. p. 42. 0

(l.ll) We make the same assumptions as in the previous subsection.

DEFINITION. A subgroup r c GL(V) is admissible (with respect to 03A3) if

(i) A and 1: are I-’-stable, and
(ii) the orbit set (X n I)/r is finite.

Our aim is to prove an analogue of (1.10) for the quotient of I(, 03A3). by an
admissible group 0393. We first note:
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(1.12) PROPOSITION. The analytic subspace I(A, 1)*/F of I(A, 1)/F is compact.
Proof. Let J e 1 n I. Since St(03C3) is a neighbourhood of 0’ in I the closure of the

stratum Vc /(A + 03C3) in I(A, E) is a compact analytic space. As r is assumed to
act admissibly there are but a finite number of r-orbits in £ n I, cf. (iii) of the
definition in (1.2). Therefore I(A, 1)’/F is covered by a finite number of compact
spaces, and the proposition follows. 0

DEFINITION. A group r c GL(V) is said to act admissibly on the character-
istic triple (03C0, 03B4, A) if ô is a fixed point of r, and if the action of 0393 on P is
admissible with respect to Î and descends to an admissible action on V that
makes JY-1 4. V equivariant too.

If r acts admissibly on (03C0, ô, 03BB), and if

is the induced analytic quotient then 2(n, ô, A) descends to a reflexive analytic
sheaf

on I(A, 03A3)/0393. Since q is locally a finite mapping this sheaf still is a Cohen-

Macaulay sheaf as in (1.8).
Recall that for each closed (D c E and each 1 E Ã v with (03B4, l = 1 we have

defined a topological pair

If 03A6 is r-stable then r also acts on the disjoint sum

via

This action is properly discontinuous with finite isotropy groups, and has a
finite Hausdorff quotient

(1.13) THEOREM. Let 03A3 be an admissible fan in V, and let (n, b, Â) be a
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characteristic triple for 1, on which r c GL() acts admissibly. Then the

(analytic) cohomology of 2(n, b, A)/r over I(A, 03A3)/0393 can be computed via a
canonical isomorphism

H*(I(A, 03A3)/0393; 2(n, b, A)/r (D I(,03A3)/0393) ~ H*(Y(L; n, b, Â), Y’(L; n, b, Â); C).

Proof. We first prove the existence of a normal subgroup F’ c r of finite

index, with the property:

(1.14) Whenever y E r’ and 03C4 ~ 03A3 ~ I are such that 1-r n y-T n 1 :0 Qf then y = 1.

Let F c A be the set of indivisible generators of one-dimensional cones in L,
and put

Since r is admissible it acts on F2 with a finite number of orbits, and we find a
positive integer m such that

Then

is a normal subgroup of finite index in r which satisfies (1.14). Indeed, let yen
and T E E n 7 be such that t n yî n I is non-empty. This intersection contains
some 03C3 ~ 03A31 n I, spanned by v E F, say. We have

and by definition of r’ this implies yv = v. Thus y maps St( eT) into itself, and
therefore must be the identity.
We now choose r’ so that (1.14) holds. For each 03C4~03A3 nI the union

then is a disjoint one; therefore I(A, 03A3)/0393’ is covered by the affine varieties
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with i running through a system of representatives of 03A3 n 1 mod r’. Thus

I(A, 03A3)/0393’ itself has the structure of a complex algebraic variety, which is

complete by (1.12). In view of the GAGA principle we may compute the
cohomology groups in question as algebraic rather than analytic cohomology
(for F’ in place of r).

Likewise (1.14) implies that for each 03C4~03A3 n 7 the union

is disjoint, and that therefore the pair

defined by r’ is covered by the pairs

(L E (E n I)/r’). The assertion of the theorem for the group r’ in place of r’ now
follows upon comparing the Cech complex of the affine covering of I(A, 03A3)/0393’
(with coefficients in (03C0, b, A)/r’ (D I(,03A3)/0393’) to that of the covering of the pair
( Y(E; 7r, b, Â), Y’(03A3; n, b, 03BB)) (with constant complex coefficients).
The isomorphism thus obtained is equivariant with respect to the finite group

r/ r’. The theorem therefore follows in general upon passing to the r/ r’-fixed
parts of the cohomology groups. n

(1.15) We keep using the notation from the previous subsections. There is a
criterion of ampleness for the sheaves 2(n, b, A)/r, as follows.

(1.16) THEOREM. Let 1 be an admissible fan in Y, and let (7r, b, Â) be a
characteristic triple for E. Further, let r c GL(V) act admissibly on the triple
(7r, Ô, Â).

Then the sheaf 2(n, b, A)/r (D I(,03A3)./0393 on I(A, 03A3)/0393 is ample if and only if the
characteristic section A is strictly convex on E n 1 in the sense that for each
03C3 ~ 03A3 n I there exists an 1 E Â ’ such that

03B4, l&#x3E; = 1

10 Â 0 everywhere on |03A3|, and

10 A = 0 exactly on 03C3.

Proof. Since there are only finitely many r-orbits in 03A3 n I Proposition (1.8)
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implies that for suitable m &#x3E; 0 the reflexive hull of !R(n, ô, 03BB)m is invertible.

Replacing (Ã  , ô, A) by (Ã + (1/m)Z03B4 A, (1/m)ô, 03BB) we thus may assume that
Y:= L(03C0, ô, A) itself is invertible.

First suppose that 2 Ir Q OI(,03A3)/0393 is ample, and fix any 03C3 e X n 7. The closure
S of the stratum Vc/(A +Cu) in 7(A, X)’ is a compact analytic variety, and the
quotient mapping

is a finite morphism. At the cost of raising fil to a suitable tensor power we may
assume that for each s E S the stalk Ls O (9,,, is isomorphic to (9s,,, as a rs-
module. It then follows that

which shows that S Q9 (!Js is an ample sheaf on S.
The variety S is the torus embedding of T(A/(A n R03C3)) defined by projecting

all members of E that are contained in St(Q). Applying the ampleness criterion
[Kempf et al.] p. 48, Theorem 13 we conclude that Â is strictly convex at a. This
being true for all J E E n I it easily follows that 03BB is strictly convex globally, using
the fact that each A-rational compact segment in JY-1 meets only finitely many
03C3 ~ 03A3.

Assume now that Â is strictly convex on E n 7. We choose a finite closed
subset 03A6 c X sufficiently large so that I(A, 03A6). maps onto I(A, E)’/r. Arguing as
in [Demazure 1] p. 568, Théorème 2 we find a positive integer m and a finite
number of characters 1 E Ã v with 03B4,l = m such that the corresponding sections
in HO(I(, E)’; Lm Q OI(,03A3).) define an embedding of I(A, 03A6). in a projective
space. Enlarging m we can arrange the choice of the characters 1 so that all these
sections have support in I(A, 03A6).

Let now z and z’ be points in I(A, 03A6)~ with Fz ~ 0393z’. By the preceding, we find
an even larger m and a section

that vanishes on all but one point of 0393z u 0393z’, and has support in I(A, 03A6)~. As the
number of points any r-orbit can have in I(A, 03A6)~ is bounded, m can be chosen
uniformly for all choices of z and z’ in I(A, 03A6)~. Since the action of r on (n, 03B4, A) is
admissible the sum
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is locally finite and thus defines an invariant analytic section in

By construction this section separates the orbits rz and rz’.
Likewise one can construct invariant sections that separate tangent vectors.

We omit the details. D

2. A family of abelian varieties

(2.1) Let R be a reduced irreducible finite root system, and let

be the dual of the affine root system obtained by completing R v. A choice of a
basis

of R also determines bases of R, R^ and hence of R; we let ao E R denote the
extra base root. Note that R is canonically embedded in R.
We think of R as realized in a real vector space P of (minimal) dimension r + 2.

Following [Looijenga 3] we introduce the Tits cone + c F of R; its interior
I c V determines the tube domain

Let Q = 7 R respectively Q = ZR denote the root lattices of R and R, and define
b E Q as the smallest positive linear combination of the base roots that is

orthogonal to ()v = R^. Then as the coefficient of ao in ô is 1 the projection

will send the sublattice Q ~ e bijectively to Q/Z03B4. In this way we will often
identify these two lattices; in particular this allows us to think of R as a root
system in E If we put
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then

(2.2) The root systems R and R generate Weyl groups

the first of which, W, preserves the subspace RQ ~ . We also have an extended

Weyl group

of R, which is a group of affine automorphisms of K These groups also act on the
tube domains Q and S2, as is clear from the definitions.
The structure of 17V and W^ can be understood as follows. Let T c W be the

kernel of the projection homomorphism

(which is defined since ô is a fixed point of W). The obvious group homomorph-
isms fit into exact sequences

In order to give an explicit description of these extensions we introduce the W-
invariant scalar product (? ?) on Q, normalized by the requirement

(note that b - ao is a short root of R). We shall also think of (?|?) as defined on
the vector space RQ, and sometimes even on Q or RQ (with a radical spanned
by ô).

In order to fix coordinates on P we choose a vector p e P which is orthogonal
on R v and is normalized by

We then assign to each coordinate triple (u, z, 03C4) ~ R x RQ x R the point
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Each element of T c W can now be written

for a uniquely determined t E Q, and this sets up an isomorphism between T and
the additive group Q, cf. [Kac] p. 69 or [Looijenga 3] p. 28. This formula
likewise describes the extensions (2.3); indeed the action of W on T by
conjugation corresponds to the natural action of W on the lattice Q, and e x T
becomes a Heisenberg group with centre 7Lb.
Note that the actions of W on Î, and of W on fi are properly discontinuous

with finite isotropy groups, and yield Hausdorff topological respectively analytic
quotients. This follows directly from the explicit description of the actions
though it also is part of the general theory of root systems [Looijenga 3].

(2.4) There is a natural action of the modular group SL2(Z) on Pc and S2,
expressed by the formula

In fact this defines an action of a semi-direct product W   SL2(Z), the latter
being determined as follows: conjugation by the matrix

acts trivially on 7Lb x W c W ^ , and sends zt~QT ~ 6x6 to

Since SL2(Z) acts properly discontinuously, with finite isotropy groups, and with
a Hausdorff analytic quotient on the W^-invariant coordinate i varying in the
upper half plane H the same properties hold for the group W^ SL2(Z) with
respect to its action on the tube domain Q.
We now fix a subgroup r c SL2(Z) of finite index, and study the action of r

on the C*-principal bundle

Note that fi c Vc and 03A9 c Vc can be described as the inverse images of the
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upper half plane H under the complex coordinate i on Vc resp. Vc, cf. [Kac],
[Looijenga 3]. Adjoining the fibre C via

we pass to a line bundle on Q/Q - T. Let fi denote the corresponding invertible
sheaf. Dividing now by the action of r we obtain an analytic quotient

together with the coherent analytic sheaf

on A’. For any i E H the fibre ArT of p’ over the orbit ri E C’ is the quotient of the
abelian variety 03A903C4/QT by the isotropy group FB of i, with a non-reduced
structure if this group contains elements other than +1, i.e. if 03C4 is an elliptic fixed
point of r. Note that in case r contains -1 the general fibre A’ is not an
abelian variety but its (singular) Kummer quotient.
The sheaf S’ on A’ always is, by construction, a reflexive Cohen-Macaulay

sheaf of rank one.

(2.6) Let C be the compact curve obtained from C’ by adding the cusps of r. We
wish to extend A’ and Y’ over C. Quite general compactifications of families of
abelian varieties have been constructed by Namikawa, cf. [Namikawa]. The
present situation is particularly simple as the abelian varieties in question are
mere products of several copies of an elliptic curve, and only the modulus of that
curve is allowed to vary. In fact quite an explicit compactification of A’ is readily
at hand if a construction from [Wirthmüller 2] is used. Like Namikawa’s it is of
toroidal type and, based on the discussion of reflexive sheaves in Section 1, it
also provides a natural extension of £F’.
We proceed to describe this compactification. As SL2(Z) acts transitively on

the set of cusps of r it suffices to deal with the standard cusp at i~. A typical
punctured neighbourhood of this cusp is represented by the affine upper half
plane

and as is well known, for c  1 each orbit of the isotropy group 0393i~ in ic + H is
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the intersection of ic + H with a full r-orbit. If the cusp at i oo is a regular one we
have

for some positive integer s. Similarly, in the case of an irregular cusp we have

Note that the matrix

acts on V as the translation by the vector s03B2.

(2.9) The root basis {03B10,..., 03B1r} together with the vector - sfl constitutes a mixed
root basis in the sense of [Wirthmüller 2] Section 9. Its Dynkin diagram -9
comprises the Dynkin diagram of R as the full subdiagram -9b,.,,k while Dwhite
consists of just one vertex realized by the vector - s03B2. The remaining edges of -9
are determined by the values

EXAMPLE. If R is of type B3

then the Dynkin diagram of R is

and -q is the mixed diagram
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Following loc. cit. the mixed root basis gives rise to a toroidal embedding X(-9)
of Q/Â where A denotes the lattice of rank r + 2

Let K c v be the convex cone spanned by the orbit Wp; then K c + since p
lies in the closed fundamental chamber C of R. The analytic space X(-9)
constructed in loc. cit. is, by definition, the union of a copy of the upper half
plane H, and the open subset of the affine torus embedding determined by A and
K, comprising all points representable by vectors in Q.

(2.10) Rather than working with X(-9) directly, we use the cone K in order to
construct a (non-affine) torus embedding of T(A), where

To this end we need an admissible fan EK for A, which we take to be the set of
projections of all proper faces of K under the linear map  K The following
proposition will show, in particular, that EK is admissible indeed.
We let 1:K denote the set of proper faces of the closed cone

and put

K. is the topological boundary of K in P. Thus

by definition.

(2.11) PROPOSITION. (a) 03C0(K) = I+, and for each (z,-r)E1 the set

is a closed ray in R, bounded from below.
(b) The restriction of n: V - V

is a homeomorphism.
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(c) KBR_03B4 is the image of a section

which is characteristic with respect to EK and Ã ~ A.
Proof. Clearly 03C0(K) is contained in I+. On the other hand {(z, T) E 7r(K) ! r = 1}

is a non-empty convex set which is invariant under the lattice of translations
T ~ Q, whence this set is the full affine space {(z, 03C4)~V|03C4= 1}. This proves
03C0(K)=I+.

Let C c V denote the closed fundamental chamber of R as before. Let
y E C n Î be arbitrary. By [Looijenga 3] (2.4) the convex hull of the orbit Wy
meets C exactly along the set

where A - = (-~, 0]. As the chambers induce a locally finite covering of the
open Tits cone Î this implies that K n Î is closed in  (put y = 03B2). For
y~ C n I n K it also implies

and since C is a fundamental domain for the action of W on + we conclude

Given (z, r) ~I, the set {u E R|(u, z, i) E K} therefore equals [t, oo) for some t E R,
or t = - oo . In fact this last possibility is ruled out at once since Wp, and hence
K, is completely contained in the half space {(u, z, i) ~| u  0}. This completes
the proof of (a).
We now know that for any y E I the set 03C0-1(y) ~ K is a closed ray in K This

ray intersects K. in its end point, which we define to be ÂK(y). We complete the
definition of 03BBK: I + ~  by putting AK(O) = 0. Then AK 1 a- is linear for each o- E EK
because n is linear.

The fundamental chamber C meets but a finite number of cones from f. n .
Since C has the form

this means that 03C0C meets but a finite number of cones from I:K n I, which in turn
implies that EK n 7 is a locally finite covering of I. The section I K n 1, being
piecewise linear, thus is seen to be a continuous inverse to K. n ~ I.

In particular we now have proved (b), and in order to complete the proof of (c)
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it remains to show the integrality property

for each 03C3 E EK with dim Q = 1. The image 03BBK(03C3) E ÎK is a one-dimensional face of
K, and in view of the classification of faces of K given in [Wirthmüller 2] p. 230,
Theorem 9.5 that face is W-conjugate to the ray R+03B2~. We therefore may
assume 03BBK(03C3)=R+03B2, and the assertion follows since s·03C003B2~V is a primitive
vector in A. D

REMARK. It is not generally true that 03BBK(I+ n A) ce À. To what extent this fails
may be read off from the classification of faces of K. In fact, up to -conjugacy
these faces are classified by the subdiagrams of -9 in the sense of loc. cit. It is

readily verified by inspection that the only 03C3 E EK with 03BBK(03C3 n A) Â are those
with 03BBK(03C3) corresponding to one of the subdiagrams

(R of type E7), or

(R of type E8). The numbers marking the vertices that are not included in the
subdiagram are their multiplicities in the greatest root b - ao of R; in all cases
the g.c.d. of these numbers is the smallest positive integer m with

03BBK(03C3 n A) c (1/m).
(2.12) We let lk and Â, retain the meaning from the previous subsection.

LEMMA. The group T acts . freely on EK n I.
Proof. Let t~T and 03B1 ~ 03A3 k ~ I, and assume t(03C3) = J. As the coordinate

i : V - R is T-invariant t must fix the relatively compact set
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The barycentre of this set will then be a fixed point of t. But t acts as a translation
on the affine space {(z, 03C4)~ Vlr = 1}, and thus t = 1 follows. 0

The lemma shows in particular that the action of T on V is admissible with
respect to 1,, and a fortiori T acts admissibly on the characteristic triple
(n, Ô, 03BBK). We therefore have an associated reflexive analytic sheaf L(03C0, b, 03BBK)/T
on I(A, 03A3K)/T. If the cusp at foc is regular, and if - 1~0393 then the open subset

naturally extends the restriction of A’ i C’ over the punctured neighbourhood

of the cusp at ioo. By construction the sheaf !l’en, b, 03BBK)/T extends L’ in the same
sense. In a slightly different way, this is also true if -1 E r, or if the cusp is
irregular. In the former case the extension is provided by the quotients of
I(A, 1,)IT and L(03C0, 03B4, 03BBK)/T by the involution

Likewise, if the cusp is irregular one would begin the construction with 2s in
place of s, and then form the quotients by

Using the action of SL2(Z) in order to handle all other cusps of r we obtain a
proper analytic morphism

extending p’, as well as a reflexive rank one sheaf Y on A with .P A’ - Y’.

(2.13) We compute the cohomology of Ef and its powers along the fibres
A, = p-1(c), for all c~ C.

At first we look at the fibres of the projection

which is a smooth family of abelian varieties. For any fixed i E H, we let
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be the invertible sheaf induced by Lm on the fibre (nlQ ---4 T), over r. As is well
known, for all exponents m ~ 0 one has

with all cohomology concentrated in degree 0 if m &#x3E; 0, and in degree r if m  0.
The lattice P c QQ is the weight lattice of the finite root system R. For details
see [Mumford] Section 111.16 and [Looijenga 1] p. 19.
As to the cohomology of the trivial bundle we have, for each i E H, a canonical

isomorphism

For each m E Z we let !fJ(m) denote the reflexive hull of the tensor power .film on A.
For its restriction to A’ we have the alternative description

where 03A9/Q  T q A’ is the quotient map. We now can determine the coho-
mology of L(m) along the fibres of A’ 1 C’.

(2.14) PROPOSITION. Let i E H, let c E C’ be its image in C’, and put

Then

Proof. We let 1 ce H be the connected component of z in the fibre of the
quotient map H - C’ over c. Thus î is a point that carries a non-reduced
structure in case i is an elliptic fixed point of r. Since 03A9/Q  T is smooth over H
and since the Betti numbers of the sheaves £fi§J’ do not depend on 03C4 ~ H the direct
image sheaves Ri03C4*m are locally free on H. In particular there exists, for each
integer i, an isomorphism

Though not canonical, such an isomorphism can be chosen equivariant with
respect to the isotropy subgroup F, c r. The Leray spectral sequence of
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now yields

The finite abelian group 039303C4 acts on (9î by the regular representation unless
-1 ~ 0393, in which case it acts via the regular representation of 039303C4/{±1}.
Therefore the last vector space is isomorphic to Hi((03A9/Q  T)T; respectively,
its even part Hi((03A9/Q  T)03C4; Lm03C4){±1}. 0

(2.15) We complete the calculation of the previous subsection by computing the
cohomology of !f’(m) over a cusp of r. Again it suffices to consider the standard
cusp at i oo .

We first assume -1 ~ r. As before we put, for any m E Z

By Theorem (1.13), H*(Ai~; L(m)i~) is, for m ~ 0, the cohomology of the
topological pair

Recall that by definition

where

Thus (Y, Y’) decomposes into a disjoint sum indexed by the T orbits in the affine
lattice {l ~ Ã v| 03B4, l = ml. Those 1 with l°03BBK positive everywhere on I clearly
make no contribution to (Y, Y’); they may be characterized by the property
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If, on the other hand, 1 has a zero in the interior of K then the T orbit of 1

contributes an r-dimensional manifold with boundary to Y, and the interior of
the same manifold to Y’. Thus from such 1 there is still no contribution to the

cohomology of (Y, Y’).
The remaining characters l~Ãv (with 03B4, l = m) are those with ker 1 a

supporting hyperplane of K that intersects K along the closure of some face
from ÎK n Î For m &#x3E; 0 and any such 1 the set Y is the closure of a cone from EK
while Y’l is empty. Thus the orbit gives a one-dimensional contribution to
H°(Y, Y’; C). Likewise, for m  0 there is a one-dimensional contribution from

the orbit of 1 to Hr(Y, Y’; C).
It remains to count the number of relevant orbits in {l ~ Ã | 03B4, l = m}. To

this end we observe that any such 1 is uniquely determined by its restriction to
the sublattice A c Ã, and further restricts to a character on Q c A, i.e. a weight
l’ ~ P of the root system R. Conversely, given any weight l’ ~ P, there clearly is a
unique rational extension 1: Ã ~ Q of l’ with 03B4, l = m and ker l a supporting
hyperplane of K intersecting K along the closure of a face from k n I. By the
classification of faces of K [Wirthmüller 2] p. 230, Theorem 9.5, some W

conjugate of that face contains 03B2; this implies that 1 is integral on fi, and therefore
tha t l ~ Ãv.
We thus have established a bijective correspondence l ~ l’; it turns out T

equivariant if we let t E T act on the lattice P as the translation by mt. We
therefore have exactly |P/Q| · mr contributing orbits in {l ~ Ã v |03B4, l = m}, and
conclude

for all m ~ 0, with all cohomology in H° for m &#x3E; 0, in Hr for m  0.

In order to compute H*(Ai~; Ai~) we think of the trivial bundle as obtained
from the characteristic triple (À 5 A, b, Ao) with

The only contribution to the homology of ( Y, Y’) comes from the character
l ~ Ãv (with 03B4, l = 1) that vanishes identically on A. Its contribution to (Y, Y’)
is the pair (liT, 0), and as liT is homotopy equivalent to a real torus of
dimension r we obtain

Finally, our calculations are summarised by
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(2.16) THEOREM. For each m~Z and each i  0 the function

is constant on the curve C.

Proof. This has been proved, with the exception of the irregular cusps and the
case - 1 E r. Dividing by the extra involution takes care of these as well. D

COROLLARY. For each mE7L the direct image sheaves Rip*L(m) are locally
free sheaves on C, and for all points c ~ C one has

Proof. Being torsion free, Y(-) is flat over the curve C, and the theorem on
cohomology and base change applies. D

3. Jacobi forms

(3.1) We introduce another reflexive rank one sheaf M on the variety A
constructed in the previous section. Recall from (2.12) that A was obtained by
gluing A’ = p-1(C’) with copies of I(A, 03A3K)/T, the latter divided by the involution
[z, 03C4] ~ [-z, 03C4] if -1 ~ 0393. We first define a sheaf M’ on A’ in terms of the

quotient map

a section of aY’ over an open subset U’ c A’ is a holomorphic function (P on
q-1(U’) that obeys the functional equation

If U’ is also contained in I(A, EK)/T (respectively its quotient by the involution)
then such ç are just the holomorphic functions on U’. Therefore JI’ is

canonically isomorphic to (9A, in some neighbourhood of ABA’. We let M denote
the sheaf on A obtained from JI’ by gluing with (!) A along such a neighbourhood.
For each integer k we let JI(k) denote the reflexive hull of the tensor power Jlk.
For many choices of r and k the sheaf M(k) is invertible, and in fact comes

from a line bundle M(k) on C. A local section of M(k) over C’ = H/r is by
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definition a local function ç on H obeying the functional equation

ç is holomorphic at ioo if its Laurent expansion in e203C0i03C4 is a Taylor series; this
also determines the notion of holomorphy at the remaining cusps. Thus the
global sections of M(k) are just the modular forms of weight k ; we write

and

for the graded algebra of all modular forms.
We put M = M(1). Note that M(k) is an invertible sheaf unless - 1 ~ 0393 and k is

odd, in which case M(k) is the zero sheaf.

(3.2) PROPOSITION. Each of the following conditions implies that the canonical
homomorphism

is an isomorphism:

(i) - 1 ft r, and r has no fixed points on H;
(ii) k is divisible by 12.

If (i) holds then M(k) = Mk while if (ii) holds then M(k) = (Jt(12»k/12.
Proof. Condition (i) means that r acts freely on H while (ii) implies that all

isotropy groups 039303C4 (03C4~H) act trivially on the factor of automorphy (c03C4 + d)k.
Either implies that p*M(k) ~ M(k) is surjective; the kernel, being a torsion
subsheaf of p*M(k), must then vanish. This proves the first assertion, while the
second is straightforward. D

(3.3) We now let /km denote the reflexive hull of the sheaf M(k) ~ 2(m) on A. In
view of Propositions (1.8)(a) and (3.2) the following statement makes sense.

(3.4) PROPOSITION. For all positive integers k and m the sheaf Fkm is ample.
Proof We may assume that /km = p*M(k) Q 2(m), and since M(k) is ample on

C it suflices to show that L(m) ~ O Ac is ample on each fibre Ac of Ap C. As
ampleness is not aSëcted by taking finite quotients it suffices to see that
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fi ~OH,03C4  is ample on (Q/Q T)03C4 for each 03C4 E H, and that

is ample on I(A, 03A3K)~/T. The former is classical, cf. [Mumford], while the latter
follows from Theorem (1.16). D

DEFINITION. The global sections of the sheaf Fkm on A are called Jacobi
forms of weight k and index m. We let

be the complex vector space of such Jacobi forms, and put

Since for Jacobi forms of zero index one has

J** is a bi-graded algebra over M*. Note that while clearly Jkm = 0 if m  0

there may be non-trivial Jacobi forms of negative weight; as we shall see below
this is in fact the case.

We are particularly interested in symmetric Jacobi forms ç e J’ : those which
are invariant with respect to the action of the finite Weyl group W on A and Fkm.
The definition of Jacobi forms is easily rewritten in analytic terms. For the sake
of simplicity we do this only for symmetric Jacobi forms ~~JWkm in case
r = SL2(Z) is the full modular group. Such forms correspond to holomorphic
functions ~: Q - C with the following properties:

Indeed there is but one cusp to consider, and since all one-dimensional cones in
the fan EK are W-conjugate to the projection of the ray R+03B2 ~ V condition (iv) is
suflicient, in the presence of (iii), to en sure holomorphy of ~ along Aioo.
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Given the root system R, the family of abelian varieties A 4 C together with
the sheaves 2(m) and J/(k) still depends on the choice of the subgroup
r c SL2(Z). For the moment let us write, more precisely,

and likewise Jkmr for the spaces of Jacobi forms. Clearly JkmSL2(Z) may be
identified with the subspace

of invariant forms. In particular any given Jacobi form (p E JkmSL2(Z) induces
Jacobi forms

for all subgroups r c SL2(Z) (of finite index). By abuse of language we say that
the (pr obtained in this way do not depend on the choice of r.

(3.5) We proceed to formulate the main result of this paper. Let

be an (r + l)-tuple of non-negative integers. For each multi-index

a = (ao,..., ar) (of non-negative integers) we then let

be the weight of a. The direct sum

has the structure of a sheaf of (9c-algebras in a natural way.

(3.6) THEOREM. Let R be a fixed classical (reduced and irreducible) root system
of rank r, but not of type Es. Then there exists a basis

of W-invariant Jacobi forms, in the following sense.

(i) Each
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is a W-invariant Jacobi form of weight - k(j)  0 and index m(j) &#x3E; 0, and gj
does not depend on the choice of the subgroup r c SL2(Z).

(ii) The sheaf homomorphism

which is multiplication by f03B100fa11... farr on the summand with multi-index a
is an isomorphism of t9c-algebra sheaves.

(iii) For each c ~ C, let IAcl denote the reduced fibre p-1(c) c C. In case c is not a
cusp we fix some i E H so that the restriction to IAcl of any Jacobi form ~ E J km
is identified with a section

Then the algebra

is the re-invariant part of the polynomial algebra in the indeterminates (9j),,
where re = 039303C4 if c is not a cusp, and re = F ~ {± 1} else.

(iv) The algebra of W-invariant Jacobi forms is the polynomial algebra

in the indeterminates ~j over the algebra of modular forms.

REMARKS. The indices m(j) of the basic Jacobi forms ( j = 0,..., r) are the
coefficients of 03B4 written as a linear combination of the base roots ao, ... , a, of R.

This is already known from [Looijenga 1]. On the other hand, apart from
k(o) = 1, the integers k( j ) turn out to be the degrees of the generators of the ring
of invariant polynomials

i.e. the exponents of the Weyl group W increased by 1. Some reason for this fact
will be given in (5.22) below, but we do not know of a satisfactory a priori
explanation.

Geometrically, (ii) implies that the family A/W - C is a bundle of weighted
projective spaces (or their quotients by the action of { ± 1}, if -1 ~ 0393).
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(3.7) We begin the proof of (3.6) with some preparations designed to eliminate
case distinctions; the proof proper will be the subject of Sections 4 and 5.
We first note that for  3 the principal congruence subgroup

acts freely on the upper half plane. Given the group r, we put

In the sequel while using our standard notation we add a """ symbol to indicate
reference to  rather than r. We have a commutative square

wherein q and 4 are the quotient morphisms with respect to the action of the
finite group r. It follows from the definitions that for all integers k and m one has
the identities

while on the global level

We now assume that ~0, ~1,..., (Pr are Jacobi forms for which parts (i) and (ii) of
Theorem (3.6) hold, with r in place of 0393. We show that then necessarily parts (ii),
(iii), and (iv) hold for r.

Indeed the isomorphism

yields, upon application of q* and passing to r-fixed spaces, an isomorphism
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which proves (ii) for the group. On the other hand (iii) for f clearly follows from
(ii) by restriction to the fibre while (iv) follows by taking global sections. Both
properties then follow for 0393 too, by passing to rc- and r-invariants, respectively.
For the proof of Theorem (3.6) it therefore suffices to construct Jacobi forms

(po, ~1,..., qJr which, apart from (i), satisfy (ii) under the additional assumption
that 0393 c r(3). In that case i7 is the symmetric algebra over the locally free sheaf
of (9c-modules

Since the sheaves p*L(m), and, a fortiori, the sheaves p*L(m)W are also locally
free by (2.16) the isomorphy (ii) will in turn follow from (iii) which now reduces to
the statement that for each c ~ C

is the polynomial algebra [(~0)c,...,(~r)c]. Note that the truth of this

statement is independent of the choice of r c r(3).

(3.8) By the preceding the proof of Theorem (3.6) has, in particular, been
reduced to the case of the group r = r(3), to which we now stick. Denoting the
corresponding family of abelian varieties by A 4 C again we outline the

remaining steps to be done in order to complete the proof of the theorem.
(1) We shall construct symmetric Jacobi forms ~j on A which furthermore are

invariant under the group r = SL2(Z)/0393(3):

(2) We then show that for each c~ C

is the polynomial algebra Cl(w0)c’ ... , (qJr)cJ.

4. Construction of Jacobi forms

(4.1) We begin with a digression on arrangements of divisors. Throughout A
will denote an analytic Cohen-Macaulay variety, while .2 will be a coherent
sheaf of Cohen-Macaulay (9A-modules.
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DEFINITION. A type 7 arrangement (of divisors) on A is a finite set

of effective Weil divisors Y on A with the following properties.

is a Cartier divisor.

n one always has

In the sequel we abbreviate

etc.

(4.2) PROPOSITION. Let {Y1,..., Yn} be a type I arrangement on A, and put
Y = 03A3ni=1 1i. Then the canonical sequence of restriction homomorphisms

is exact, and therefore the corresponding global sequence

also is exact.

Proof. We put

and let
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denote the open inclusion maps. By assumption YBU1 and YB U2 are analytic
subsets of codimension at least 1 and 2 in Y, respectively. Since Y is a Cartier
divisor on A the sheaf fil  OY is a Cohen-Macaulay sheaf on Y By an extension
theorem of Scheja, cf. [Siu and Trautmann] p. 36, Theorem (1.14), this implies
that the restriction homomorphism

is injective while

even is an isomorphism. The former implies injectivity of

while the latter reduces the question of exactness at (Di Yi to the special case
when at any given point of A no more than two of the Y intersect. Under this
extra assumption exactness at the term ~i Li is obvious. D

(4.3) More generally, we now will allow up to three divisors to intersect along a
codimension two subset of A. In that case though, we shall impose conditions on
the arrangement as well as on A and 2 that are much more restrictive in other

ways.
For A and 2 as above we put

DEFINITION. A type II arrangement on A (with respect to L) is a finite set

of effective Weil divisors on A with the following properties.

is a Cartier divisor

n one has

and the set

Yi and 1j are not (smoothand) transverse at y }
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also satisfies

Given a type II arrangement {Y1,..., Yn} we further introduce the sets

(1  i  j  n). For 1  i  j  k  n the union of all irreducible components of
dimension dim A - 2 in the analytic set

will be denoted Vijk. Both Vij and Vijk are constructible submanifolds of A of
dimension dim A - 2.

(4.4) We let Jf denote the kernel of the restriction homomorphism

already considered in (4.2). We now shall construct a subsheaf V c Jf which
will turn out to comprise exactly those sections of the Li that can be pieced
together into a section of S Q (9,.

Let us for the moment fix some point y ~ Vijk. Since Yy is a free (9A,.,-module we
may pick some trivialization

In view of the definition of the manifold Vijk we can find germs of vector fields

such that

while none of vi, vj or vk is tangent to Vijk at y.
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DEFINITION. Let U c A be open. A section

belongs to V(U) if for all triples (i, j, k) with 1  i  j  k  n and all ye Vijk n U
the identity

holds in «9,,, O ... ~ OA,y) (8) (9V i j.,., -
To justify this definition we prove:

LEMMA. Given s, the validity of (4.5) does not depend on the choice of t nor on the
choice of the vector fields Vi, Vi, Vk.

Proof. As to the independence of t, it suffices to show that the left-hand side of
(4.5) is an (9 A,y-linear function of s. Thus let u E (9 A,y. Then

and since si, sj and sk restrict to one and the same germ in Ly ~ OVijki,y the
contributions from the second terms add up to zero:

Likewise, if v’i, v’j, v’k is a second choice of the triple of vector fields then the
residue class of v’i in FVi O OVijk,y satisfies

for some u E OVijk,y and Wi E (FVijk)y, and similarly

with the same u. Summing up we obtain

Since wi + wj + wk = 0 the assertion follows.
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(4.6) PROPOSITION. Let {Y1,..., Yn} be an arrangement of type II on A, and
put Y = U?=i Yi. Then the restriction homomorphism

induces an isomorphism

Proof. If a local section s = (s 1, ... , sn) of ~i Li comes from a local section s of
IR p (9y then it certainly belongs to K, and (4.5) just reflects the linearity of the
differential of ts at y. Thus s is a local section of Y. On the other hand, for the
same reason as in the proof of (4.2) the homomorphism

is an injection; the point in question is its surjectivity.
Surjectivity may be verified stalkwise, and is settled by Proposition (4.2) at all

points y E A at which at most two of the divisors Y (1  i  n) meet. Of the
remaining points y we need consider only those which belong to some Vijk
(1  i  j  k  n), again by the extension argument used in the proof of (4.2).
Thus let y E Vijk, and let s = (s1,..., Sn) E 1/y. We have to find an s ~ Yy O (9,,y

simultaneously representing

Applying Proposition (4.2), at least we find a germ Sij E 2y Q (9y,y that represents
si and s J . We let sij be the image

of sij.
In some neighbourhood of y the intersection (Yi ~ Yj) ~ Yk coincides with the

local divisor 2Vijk on Yk. Since s ~ vy by assumption, we have SE Ky, and (4.5)
holds at y : these two facts together just mean that sij and sk map to one and the
same germ in 2y Q (!)2Vijk,Y- Another application of Proposition (4.2) now
provides an Se 2y ~ (9,,y as required. D

(4.7) We now assume a finite group W of automorphism of A is given, which also
acts on the sheaf 2. Thus with each w E W there is associated an isomorphism
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such that 03C11 =id, and if v E W is another element then the diagram

commutes. We consider an arrangement {Y1,..., Yn} on A (of type 1 or type II)
with the property that W permutes the divisors Y transitively. Each w E W,
sending Y to Yj, say, then induces a linear isomorphism

If W1 c W denotes the isotropy subgroup of Y1 then projection to the first
summand clearly gives an injective linear map

Let again JE be the kernel of

(4.8) PROPOSITION. Sections s ~ H0(Y1; L1)w1 which belong to the image of
HO(A; K)W are characterized by their property that for all i (1  i  n) and all
w E W with w YI = Yi the sections

and

represent the same section in H0(Y1 ~ Y; Lij).
Proof. The condition clearly is necessary. On the other hand if it is satisfied,

and if for 1  i  j  n the automorphism Wi E W sends Yi to Y, and Wj E W
sends Y1 to ¥j, then the condition applied to w:= w-1jwi shows that
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and

restrict to the same section in H0(Yi~ Yj; Lij). Then s is the image of

For repeated use later on we record the following special case, which is

particularly simple.

(4.9) PROPOSITION. Let{Y1,.., Yn} be a type 7 arrangement on which W acts.
Assume that for each i (1  i  n) there exists a Wi E W such that

and such that the homomorphism

induced by pwi is the identity. Then, with Y = Ei Y as usual, the restriction
homomorphism

is bijective.
Proof. The condition in the previous proposition, which clearly does not

depend on w but rather its coset wW1 in W/W1, is satisfied with w = wl, for all
sections s ~ H0(Y1; 21)Wl. Therefore

is bijective, and the statement now follows from Proposition (4.2).

(4.10) The infinite product

converges locally uniformly for all w ~  and all 03C4 ~ H, and thus defines a
holomorphic function
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Clearly the limit

exists, and is locally uniform in w E C. We refer to 0) as the fundamental Jacobi
form though it is not quite a Jacobi form in the technical sense. We list the
functional equations satisfied by 03C9; their verification is routine and therefore

omitted.

We also note that the divisor of zeroes of m is the ’lattice over H’

(4.11) We return to the set-up of Section 3, and of (3.8) in particular. Let

be an invariant Jacobi form of weight - K  0 and index M  0, and let Y c A
be the divisor of zeros of ~.

(4.12) PROPOSITION. For each k  0 the inclusion Y 4 A gives rise to an exact
restriction sequence

Proof. We pass from the exact sequence

to its Wr’-fixed part (this is an exact functor), and only have to prove
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To this end we consider the Leray sequence of A -4 C, which comprises the
sequence

By the projection formula this reduces to

Passing to W-invariants we have to study

By the corollary to Theorem (2.16) we have for each c E C

If c is not a cusp then this vector space identifies with

which is a non-trivial simple W-module, cf. (2.13). As the representation type of a
finite group is locally constant the latter is still true ifceCisa cusp. In particular
Hl(Ac; (9 A)W = 0 for all c ~ C, and therefore

On the other hand H’(C; Mk) vanishes for all even k  0 by the classical theory
of modular forms since C = H/r(3) is a rational curve, see e.g. [Gunning] p. 26.
For k odd we let

be the quotient morphism and note

Since -1 e r the sheaf Jtk admits no r-invariant local sections, and therefore
(q*Jtk)f is the zero sheaf. Thus
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We now have proved that the Wr’-invariant part of the sequence (4.13) is trivial,
and the proposition follows. D

5. The individual root systems

(5.1) We now discuss the individual root systems R, and begin with the system of
type Ar (r  1), using its standard realization in

see [Bourbaki] Planche I. We define

It follows from the functional equations satisfied by the fundamental Jacobi
form that ar+1 has the properties listed in (3.3), and may therefore be identified
with an invariant Jacobi form

For r =1 the divisor Y of a2 is represented by the set

counted with multiplicity 2 (since zo = - z 1). From Proposition (4.12) we read off
the exact sequence

In this sequence the term MF2 vanishes since there are no modular forms of
weight 2 for the full modular group. On the other hand evaluation at

(0, r) e CQ x H yields an isomorphism of the quotient term with

This allows us to define a second Jacobi form

as the unique lift of the constant 1 E C.
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REMARK. Up to a constant factor ao and a2 are the weak Jacobi forms ~0,1
and ~-2,1 of [Eichler and Zagier] p. 108. Indeed, making the identifications as
before one easily verifies

Thus the quotient ao/a2, which is a meromorphic section of the sheaf M(2) on A,
is 1/403C02 times the WeierstraB p-function, cf. loc. cit. p. 39, Theorem 3.6.
We now turn to the case r &#x3E; 1, and define further Jacobi forms ar,

ar-1,..., a2, ao by induction on r. Let us specify the underlying root system R by
writing

rather than just A, Jkm, W, ....
Let Y c A(Ar) be the divisor of the Jacobi form

already constructed. Y is a reduced Cartier divisor, and consists of r + 1
irreducible components which are the W(Ar)-conjugates of the single divisor
Y1 c A(A,) represented by

The embedding

identifies YI with A(Ar-l)’ the sheaf 2(Ar) ~ (9Yl with 2(Ar-l)’ and the isotropy
group W(Ar)Y, with W(Ar-1).
Assuming r &#x3E; 2 we are in the situation of Proposition (4.9): indeed the

transposition (Ii) E W(A,) qualifies as the wi in the hypothesis of that pro-
position. Therefore for all k  0

and the exact sequence of Proposition (4.12) comes down to
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Assuming inductively that Jacobi forms ar, ar-1,..., a2, ao with

have already been defined we now obtain the same number of new Jacobi forms
on A(Ar) by lifting the aj. We fix such liftings arbitrarily and write them

again, by abuse of language.
This procedure still works in the case r = 2 which is (mildly) exceptional since

the three components of Y do not form a type 1 arrangement. Nevertheless this

arrangement still is of type II with respect to the sheaves Jkm. Let ~ ~ JW(A1)km(A1)
be a symmetric Jacobi form on YI = A(A1), and let (p be the corresponding
W(A2)-invariant section of the sheaf :tt. Let y be a point common to all

components of Y The choice of a Wl-equivariant isomorphism

makes each of the three components of t( (py) a function germ which is even. Thus
Ç satisfies (4.5) since the differentials in question must vanish at y. Therefore (p is
in fact a section of Y, which in turn comes from H°(Y; Jkm Q (9y) by Proposition
(4.6). Applying this with ao and a2 in place of ~ we now apply Proposition (4.12)
and obtain liftings

(5.2) We next consider R of type B, (r  2). The realization of [Bourbaki]
Planche III is in RQ = Rr with Q = Zr, and since the unit vectors are short roots

the normalized invariant scalar product (? ?) is twice the ordinary one on R r 

compare (2.2).
For each r  2 we introduce the Jacobi form

by the formula
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its divisor Y c A(Br) consists of r components all W(B,)-conjugate to YI which is
represented by the set

and has multiplicity 2. We give these components the analytic structure which
makes them the primary components of the Cartier divisor Y; then Y, having no
embedded components, is the union of YI and its W(Br)-conjugates in the ideal-
theoretic sense.

Since W(B,) contains the reflection at the hyperplane {Z ~ RQ|zr=0} c RQ
which represents y1 the W(Br)Y1 - invariant sections of /km(Br) (D (9y, are simply
the W(Br-1) - invariant sections of /km(Br) ~ O|Y1| where |Y1| denotes the
reduced space underlying Y1. Since this space naturally identifies with A(Br-1),
and the sheaf fkm(Br) Q9 O|Y1l with Fkm(Br-1) we obtain, using Propositions (4.9)
and (4.12), an exact sequence

for each k  0. Reading B 1= A 1 we use these sequences inductively to lift the
Jacobi forms ao, a2, b4, b6,..., b2r - 2 from A(Br-1) to A(Br). Again we fix such
liftings

and

arbitrarily, keeping the same symbols to denote them.

(5.3) The realization of the root system of type D, (r  3) in [Bourbaki] Planche
IV has the root lattice

For all r, the spaces of W(Dr)-invariant Jacobi forms JW(Dr)km(Dr) split into even
and odd parts

according to parity with respect to the outer involution u of R that changes the
sign of z 1 (or of any other component of z).
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For r  4, we define the odd Jacobi form

in terms of the fundamental Jacobi form 03C9 by

The divisor Y of dr is reduced, and consists of the r conjugates under W(D,) of
the hypersurface Y1 c A(Dr) represented by

Thus YI clearly identifies with A(Dr-1), and Jkm(Dr) Q OY1 with Fkm(Dr-1), but
now the isotropy group W(D,),, includes the involution 03C3 as well as

W(Dr-1) c W(Dr). Applying (4.9) and (4.12) the usual way we obtain for each
k  0 an exact sequence

This sequence splits into

and

In view of D3 = A3 the splitting uniquely defines three further Jacobi forms

for each r, by induction on r  4.

(5.4) In this subsection R is one of the root systems considered so far, i.e. of A, B
or D type.
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be the Jacobi forms constructed above. Then the residue classes of these.f’orms in
the C-algebra

are algebraically independent.
Proof. Let 03C8 stand for ar+ 1, b2r, and d4, respectively, and assume an algebraic

relation

holds in that algebra, with pj polynomial in the remaining forms from the list.
Then po vanishes along the divisor x c Ac of 4(, and by induction on r we thus
may assume po is the zero polynomial. Since § is not a zero divisor in

J** QM* C we may divide (5.7) by 03C8 and obtain an algebraic relation of strictly
lower degree in ik. The claim will follow after at most d such steps. D

COROLLARY. For each c ~ C the Jacobi forms (5.6) represent a basis of the
complex vector space H’(A,; L ~Oc,c )W.

Proof. Linear independence is trivially implied by the proposition, so it

suffices to estimate the dimension of HO(Ac;!R ~OC,c )W. This is done by the
exact restriction sequence

which in the three cases reads

respectively.
Clearly we have the further

COROLLARY. The direct image sheaf p*2w on C is

respectively.
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We shall use this last corollary in order to construct Jacobi forms of index 2
on A(Dr). First we prove in general:

(5.8) PROPOSITION. Let ~ ~ J W0393-k,M be a form of index M  0 and weight
- K  0, and let Y c A be its divisor of zeros. Let m &#x3E; 0 be a positive integer, and
assume that p*L(m)W is a sum of non-negative powers of the line bundle M. Then
the restriction sequence

is exact, for each k  0.
Proof. We show that H’(A; Lkm)W vanishes. In view of the projection formula

the Leray sequence of p yields

The W-invariant part of the first term is isomorphic to a direct sum

and therefore vanishes as C is rational and M has non-negative degree. On the
other hand the quotient term of the sequence vanishes since R1p*L(m) is the
trivial sheaf. D

Again specializing to the root system of type D, we have for each k  0 an
exact sequence

which splits into even and odd parts

By induction on r  4 the latter sequence allows to lift the Jacobi forms
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to even Jacobi forms on A(Dr). We fix such liftings and denote them

(5.9) PROPOSITION. For each c ~ C the residue classes of ao, a2, a4, d,., C6,
c8, ... , C2r - 2 in the C-algebra

are algebraically independent.
Proof. This is the same argument that proved Proposition (5.5). D

(5.10) So far we have constructed, for each of the root systems of types Ar, B, or

Dr, an (r + l)-tuple of symmetric Jacobi forms which for each c ~ C defines a
weighted homogeneous embedding of the polynomial algebra

with L(m)c = L(m) ~OC,c C. We must show that this embedding is surjective. To
this end, again it suffices to estimate the dimensions of the C-vector spaces
H0(Ac; L(m)c)W, which is done in a straightforward way by induction on r  1
and m  0, using the exact sequences

This completes the proof of the assertions in (3.8) for the root systems R of type
Ar, Br and Dr.

(5.11) For the remaining root systems save E6, E7, Es the corresponding
assertions follow easily from those already proven. Indeed, if S is a root system
of type Cr, F4 or G2 then we may identify the root lattices Q(S) and Q(R), with R
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of type Dr, D4, A2 respectively. If this identification is made the Weyl group W(S)
becomes the full automorphism group Aut(R) in all cases but C4 where W(C4) is
generated by W(D4) and the involution Q introduced in (5.3). We thus obtain the
global invariants easily from the identity

while for each c ~ C

Turning to the three particular cases we have

is the subalgebra of Jacobi forms of even weight, i.e.

with C6 ~ JW(G2)0393-6,2(G2) corresponding to a3.
Finally, to settle the F4 case, we have to determine the action of the group

on the algebra

We know that ao, a2, a4 and C6 are even (i.e. invariant) forms with respect to the
involution a E Aut(D4), while d4 is odd. Since the divisor of zeros of d4 clearly
fails to be stable under the full group Aut(D4) the line d4 c JW(D4)0393-4,1(D4) is not an
invariant subspace of JW(D4)0393-4,1(D4), and this implies that

is a simple Sym(3)-module. On the other hand Sym(3) acts trivially on
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and the decompositions

show that ao and c6 can be made Sym(3)-invariants by adding suitable linear
combinations of a4 and d4. Since the algebra of invariants of the representation
of Sym(3) as the dihedral group on a4 ~ d4 is C[a24 + d24, a4d24] we conclude

with f8 ~ JW(F4)-8,20393(F4) and f12 ~ JW(F4)0393-12,3(F4) corresponding to a24 + d24 and a4d24
respectively.

(5.12) We turn to the root systems of type E6 and E7. Rather than with
Bourbaki’s representation, we prefer to work with the realization of these root
systems in the Picard group of a del Pezzo surface. For 5  r  8 we thus let

Pic(X) Zr+1 denote the Picard lattice of a smooth del Pezzo surface X of
degree 9 - r. We let (111) be minus the intersection from on Pic(X). If x E Pic(X)
denotes the canonical class of X then the orthogonal complement

is the root lattice of a root system

which is of type Ds, E6, E7, E8 respectively. The Weyl group W(R) identifies with
the group of isometries of Pic(X) fixing K. These and other details concerning the
Picard group of a del Pezzo surface are conveniently found in [Demazure 2].
The finitely many exceptional classes j ~ Pic(X), i.e. those with

(j|j) = (j|x) = 1, are each represented by a (unique) exceptional curve on X
which we shall refer to as a line on X. In the case r = 6, to which we now turn, X
is a smooth cubic in P3, and the lines are the famous 27 lines on X in the
ordinary sense of the word.

If j E Pic(X) is one such line the orthogonal complement

is spanned by the set
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which is a root system of type D5. Both the isotropy group of j and the
normalizer of R in W(R) coincide with the Weyl group W(Rj) c W(R).
The set of pairs (i,j) of exceptional classes consists of two W(E6)-orbits:

Firstly, there are pairs (fj) such that the corresponding lines are skew, i.e.

(i|j) = 0. In this case one has i -j~R, and the reflection associated to i - j
swaps i and j, hence Qi and Qj, while it restricts to the identity on Qi ~ Q J . The
second W(E6)-orbit comprises pairs (i, j ) such that the corresponding lines on X
meet. In that case there is a unique further exceptional class k E Pic(X) such that
the lines corresponding to i, j, and k form a triangle on X:

i - j is the sum of two orthogonal roots a and a’. The product w E W(E6) of the
associated reflections swaps Qi and Qj, and leaves Qk invariant. The root system

is of type D4 and generates the lattice

The inclusions of Qij in Qi, Qj, and Qk realise the three possible extensions of the
Dynkin diagram D4:

If suitable identifications are made the restriction of w to Qij becomes the unique
diagram automorphism of D4 that extends to Ds under the inclusion Rij  Rk.

(5.13) Using the fundamental Jacobi form co we define a function

the product is taken over all exceptional classes j E Pic(X). A straightforward
verification shows that
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is a symmetric Jacobi form.
We let

be the divisor of zeros of e27 where again j runs through the set of exceptional
classes in Pic(X). We arbitrarily single out three of those classes j that define a
triangle on X, and denote them j = 1, 2, 3. We also fix an element WjE W(E6) for
each such j, with

The inclusions

considered in (5.12) then define canonical embeddings

We must determine which symmetric Jacobi forms

have symmetric extensions over Y After the choice of the wj each

~1 ~JW(D5)0393**(D5) determines a section

and as a necessary condition for extendability we note:

(5.14) PROPOSITION. Let f’ be the kernel of the sheaf homomorphism

as in (4.4). Then (~j) is a section of f’ if and only if the residue class

of ~1 is invariant under the full automorphism group Aut(D4) = W(F4).
Proof. This follows from Propositions (4.8) and (4.9), in view of the discussion

in (5.12). D
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We restate this proposition in terms of the already known structure of the

algebras of Jacobi forms concerned. We put

thus Ro projects isomorphically onto

We further introduce the subalgebra

recall from (5.11) that

The exact diagram

defines the subalgebra

and what (5.14) assures is that the Jacobi forms (~1 E S are exactly those with (9j)
a secton of K. We next have to determine those ~1 E S with (9j) in fact a section
of the subsheaf Y c Jf introduced in (4.4). Since triple intersections Y n Y m fi
have codimension three in A(E6) unless i, j, k form a triangle on X the quotient
sheaf YIY is supported on Y12 = Y, n Y2 and its W(E6)-conjugates.

(5.15) The algebra S c R is the isomorphic image under R  R of
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In view of the fact that Ro is the free So-module with basis {1, a4, a24} we may
decompose S as an So-module, as follows:

The subalgebra So c JW(D5)0393**(D5) is even with respect to the reflection of RQ1 at
the hyperplane RQ12; in particular for each ~1~So the differential d~1 is

everywhere zero along CQ12. Therefore (~j) is a section of V for all ~1 E So, and,
for the same reason, for all ~1 ~ Rd25.
We shall now show that (~j) is a section of V if ~1 = ds or ~1 = a4ds, but not

if ~1 = a24d5.
Let t E W(E6) be an element of order 3 that induces a cyclic permutation on

the set of exceptional classes {1,2,3} c Pic(X). Then for each vector vi eCQi
the sum

belongs to CQ12. The condition (4.5) on 91 that (~j) be a section of V therefore
reads

for all x ~ Q12 and all vi c- C Q 1. The left hand side reduces to

If ~1 is a multiple of d5, say

then the derivatives of ~1 normal to CQ12 are proportional to the values of the
function t/J. d4. The condition for (lp) to be a section of Y thus comes down to

This in turn means that in the decomposition of JW(D4)0393**(D4) into t-weight spaces,
the Jacobi form t/Jd4 has no component in the t-fixed part.
We have to check whether this last condition holds with 03C8 = 1, a4, and a2

respectively. The subgroup of W(E6) spanned by the elements t and w is the

symmetric group Sym(3), and we know from (5.11) that the Sym(3)-module
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generated by the Jacobi form d4 is the plane

this is the unique simple Sym(3)-module of dimension 2. If Vo, V+, V- denote the
simple representations of the cyclic group t (V0 trivial) then

as t-modules. Therefore (p, = d. does determine a section (9j) of "1/.
Turning to t/1 = a4, we note that a4d4 is contained in the Sym(3)-module

Its simple components are

and as a4d4 belongs to the latter it has no (t)-fixed part. Thus ~1 = a4d5 also
determines a section (9j) of Y.

Finally, to study the case 03C8 = a24 we decompose the Sym(3)-module

it is the direct sum of a two-dimensional and two one-dimensional represen-
tations. Since ai + d24 is an invariant the former must be the simple submodule

The element t/1d4 = a24d4 does not belong to this submodule, and therefore has a
non-zero component in the subspace of (t)-fixed elements. This proves that
a24d5 does not lead to a section of V.

In view of Proposition (4.6) we now have proved:

(5.16) PROPOSITION. Restriction from Y to Yi identifies

with the subalgebra
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REMARK. The same reasoning would have shown the analogous result for
each fibre of the projection Y  C.
The structure of this subalgebra is given by

(5.17) PROPOSITION. The algebra

is generated over Me by the Jacobi forms

with

and

as above. 7hese generators are subject to the single generating relation

in J-27,6.
Proof. Let S’ c R be the subalgebra generated by the elements listed. Then

clearly

On the other hand

and since Ro is spanned, as an So-module, by 1, a4, and a24 it follows that S’ also
contains Rds. This proves that the elements from the list generate. The ideal of
relations is principal because ao, a2, C6, d5, f8, and fl 2 are algebraically
independent. The second part of the proposition now follows easily. D

(5.18) We have the following proposition, which complements (4.12) and (5.8):

(5.19) Let ~ ~ JW0393-K,M be a form of index M  0 and weight - K  0, and let
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y c A be its divisor of zeros. Assume that the rank r of the underlying root
system R is at least 2. Then for all m  M, and any k E Z restriction from A to Y
gives an isomorphism

is trivial. D

Since ao, a2, c6, ds, e9, f8, and f12 all have index at most 3 we may use (5.19) in
order to obtain (unique) liftings of these forms in JW(E6)0393**(E6). In this latter
algebra we have a relation

where A is a Jacobi form of weight and index 0, i.e. a constant.

(5.20) PROPOSITION. A ~ 0, and for each c E C the forms ao, a2, C6, ds, e9, f8,
f12 have algebraically independent residue classes in

Proof. Let

be the graded subalgebra generated by those classes. It is proved in [Looijen-
ga 1] (4.2) that for generic c ~ C, the algebra JW** ~M* C is a polynomial algebra
on homogeneous generators, their degrees being the indices of ao, a2, c6, d5, e9,
f8, f12 (i.e. 1, 1, 2, 1, 2, 2, 3). Since by (5.19), J contains at least JW*m ~M* C for
m  6 the classes of ao, a2, c6, d5, eg,fs,f12 also generate the polynomial algebra
JW** Q9M. C (c E C generic). In particular we conclude 03BB ~ 0.
We now let c ~ C be arbitrary. In view of the structure of

see (5.17), every relation between ao, a2, c6, ds, e9, f8, f12 in J is divisible by
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e39 - d25e9f8 + d35f12, which is not a zero divisor in J because À :0 0. From this it
follows by induction that there are no non-trivial relations at all. D

Estimating the dimensions of the graded pieces as in (5.4) we now obtain that in
fact

for each c ~ C, and that therefore the symmetric Jacobi forms

have all the properties stipulated in (3.8). This completes the proof of Theorem
(3.6) for R of type E6.

(5.21) We finally treat the case of R of type E7. The 56 "lines" on the del Pezzo
surface of degree 2 occur in 28 pairs which are invariant under the symmetry
-1 ~ W(E7). We arbitrarily pick one representative j from each pair and form
the product function

Again this is seen to be an invariant Jacobi form

Let Y c A(E7) be its divisor of zeros; then the components of Y are isomorphic
to A(E6), and form an arrangement of type 1 on A(E7). Since -1 ~ W(E7)
stabilises each component only Jacobi forms of even degree can be extended
from A(E6) to A(E7). The Weyl group W(E7) acts doubly transitively on the set
of components of Y, and their intersections give rise to no further obstruction to
extending Jacobi forms symmetrically. We therefore have

If we put
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the right hand side comes down as the algebra

with generating relation

Exactly the same reasoning as in the E6 case allows to lift the generators to
Jacobi forms on A(E7):

It also follows as before that these forms are in fact algebraically independent
and generating along each fibre of A  C.

This completes the proof of Theorem (3.6). D

(5.22) REMARKS. The inductive procedure we have followed in order to
construct J11..invariant Jacobi forms would also serve to construct basic

invariants for the linear action of W on the vector space Vc (excluding the root
system of type E8). To some extent this explains why the weights of the basic
symmetric Jacobi forms correspond to the degrees occurring in the linear
invariant theory of the Weyl group.
We do not know to what extent Theorem (3.6) holds for R of type E8. Since

the root lattice of E8 is unimodular the Riemann theta function associated with
that lattice is a symmetric Jacobi form

which is seen to span the vector space

for each c ~ C.
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