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Abstract. A quantum space M which can be regarded as a total space of a family of quantum 3-
spheres is introduced. By the action of the quantum group SUq(2), its algebra of functions is

decomposed into irreducible components. Its spherical functions are explicitly described in terms of
the big q-Jacobi polynomials and the q-Hahn polynomials.

0. Introduction

We introduce a new quantum space, denoted by M, which has the structure of a
(G, K)-space over the quantum group G = SUq(2) and K = U(1). Its algebra of
functions A(M) is the C-algebra generated by four elements x, û, ,  with the
fundamental relations

This algebra has a *-operation such that x* = , * = -q-1. In this *-algebra
we define the two self-adjoint elements d and c by

The element c belongs to the center of A(M) while d does not. With respect to the
action of G and K, the elements c and d are invariant. In this sense the quantum
space M is the total space of a "family of G-spaces" with parameters (c, d).
Although the element d does not belong to the center of A(M), we will regard M
as a deformation family of quantum 3-spheres. In fact, by the specialization
(c, d) = (1, 0), A(M) reduces to the algebra of functions on SUq(2), regarded as a
quantum 3-sphere.

In this article, we study the spherical functions on this quantum (G, K)-space
M. The algebra of functions of A(M) contains a family of irreducible represen-
tations 03A6j;n of SUq(2) indexed by j ~ 1 2 N and n ~ Ij = {j, j - 1,..., -j}. Here the
subspace 03A6j;n is a (2j + 1)-dimensional irreducible A(G)-comodule consisting of
right relative K-invariants of weight 2n. Moreover the algebra A(M) is
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decomposed into the direct sum

where W = C[c, d] is the subring of (G, K)-invariants (Theorem 3.4). For each
j ~ 1 2 N and n ~ Ij, the vector space 03A6j;n has a basis (~jmn)m~Ij such that 9J m n are
relatively invariant under the left action of the diagonal subgroup K = U(1) of

SUq(2). We call the elements ~jmn the spherical functions on M.
Until now, some q-orthogonal polynomials are interpreted by quantum

groups ([VS, K, MO, V, KK, KR etc]). In this article, we will give two
expressions of the spherical functions ~jmn on the quantum space M in terms of
the q-orthogonal polynomials; one by the big q-Jacobi polynomials (Theorem
3.5) and the other by the q-Hahn polynomials (Theorem 3.6). From the
viewpoint of geometric interpretation, these are generalization of our previous
work on the quantum 2-spheres [NMO]. More precisely, the big q-Jacobi
polynomials of general type P(03B1,03B2)n(z; c, d : q) (a, f3 EN) appear as the zonal parts of
spherical functions ~jmn on the quantum space M, while on the quantum 2-
spheres S2q(c, d) appeared those of symmetric type P(03B1,03B1)n(z;c, d : q). The quantum
space M has a unique (G, K)-invariant R-linear mapping hM : A(M) - R with
hM(l) = 1. This invariant measure hM is represented by the Jackson integral on
the q-interval [ - d, c] (Theorem 4.1). The spherical functions ~jmn are orthogonal
under the hermitian form ,&#x3E;,L defined by hM (Theorem 4.2). This gives the
orthogonality relation for the big q-Jacobi polynomials. On the other hand, the
matrix 03A6j = (~jmn)m,n is unitary up to a diagonal matrix with entries in W. This
property of Oi leads to the orthogonality relation for the q-Hahn polynomials.
Our interpretation of the q-Hahn polynomials is an extension of that of

Koornwinder’s q-Krawtchouk polynomials [K] on SU,(2).
In the last section, we give a realization of the algebra A(M) as a subalgebra of

the tensor product of A(G) and a non-commutative Laurent polynomial ring
B[03BB, 03BB-1]. In this construction, we give explicit formulas for the connection
coefficients c’mn between the spherical functions 9jmn and the matrix elements wmn
of the irreducible unitary representations of SUq(2). As the connection coeffi-
cients, Stanton’s q-Krawtchouk polynomials are interpreted.
Throughout this article, we fix a non-zero real number q with 0  q  1, and

denote by G the quantum group SUq(2).
The main results in this article are announced in [NM1].
The authors are grateful to the referee for his valuable suggestions.

1. Preliminaries

Let A(G) = C[x, u, v, y] be the *-Hopf algebra on the quantum group
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G = SUq(2). The defining relations of the C-algebra A(G) are given by

The coproduct 0394: A(G) ~ A(G) ~A(G) is the C-algebra homomorphism sat-
isfying A(x) = x ~ x + u ~ v, 0394(u) = x ~ u + u ~ y, 0394(r) = v ~ x + y ~ v and
A(y) = v O u + y O y. The *-structure is defined by x* = y, u* = - q-1 v. The
quantum group G has a diagonal subgroup K determined by the C-algebra
homomorphism 03C0K: A(G) ~ A(K) = C[t, t-1] such that

The quantum universal enveloping algebra U = Uq(su(2)) is a C-algebra
generated by four elements k, k-1, e and f with the defining relations

Its *-structure is given by e* = f, f* = e and k* = k. The algebra U also has a
structure of Hopf algebra. We take the coproduct A: U -+ U Q U such that

The algebra U can be realized in the dual space Homc(A(G), C) of A(G) through
the vector representation. The element k is a C-algebra homomorphism
A(G) ~  such that

The elements e and f are twisted derivations of type (k-1, k) in the sense that

for all ~, 03C8 E A(G). At the generators of A(G), they take the following values:
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The multiplication in U is connected with the coproduct of A(G) by the formula

Any finite dimensional representation of G is completely reducible and
unitarizable. The irreducible representations are parametrized by the half

integers j~1 2 N and are realized as the left A(G)-subcomodules Vj of A(G):

Here stands for Gauss’ binomial

coefficient

Note that the left A(G)-comodule structure of Y is induced by the coproduct A.
The suffix m of j£ corresponds to its weight with respect to K. This convention
of suffices is different from that of [MO, M1J: In the notation of [M1], 03BEjm = 03BE(j)-m.
We define the matrix elements wnl" of v with respect to the basis j£ (m E Ij) by

Then we have the direct sum decomposition of A(G) as a two-sided A(G)-
comodule (Peter-Weyl theorem):

In [M1], the matrix elements w’mn are written as w(j)-m,-n.
The Haar measure hG on A(G) is represented in terms of the Jackson integral.

The subalgebra of two-sided K-invariants in A(G) is generated by (= _q-1UV.
For any polynomial f«() ~  [03BE], we have

The Haar measure hG induces the positive definite hermitian forms (, &#x3E;L and
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Decomposition (1.12) is an orthogonal decomposition with respect to the

hermitian form ~ , ~L or ~ , ~R.
The matrix elements w’m" can be expressed by the little q-Jacobi polynomials

defined by

Here the symbol m~m-1 stands for the basic hypergeometric series

For details on the arguments in this section, we refer the reader to [MO, M1].

2. Quantum (G, K)-space M

A quantum space X will be called a quantum (G, K)-space if the algebra
of functions A(X) has a left A(G)-comodule structure LG: A(X) ~ A(G) Q A(X)
and a right A(K)-comodule structure RK: A(X) ~ A(X) 0 A(K) such that LG
and RK are C-algebra homomorphisms compatible in the sense

(LG Q id) - RK = (id Q RK) o LG.
We now introduce a quantum (G, K)-space, which will be denoted by M

throughout this paper. We define its algebra of functions A(M) as the C-algebra
C[x, û, v, ] generated by four elements x, û, v, with the fundamental relations

We define the elements c and d in A(M) by

Then it is easily checked that d has the commutation relations

and that c belongs to the center of A(M). The algebra A(M) also has a *-structure
determined by the condition
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This quantum space M has a structure of (G, K)-space with respect to

G = SU,(2) and its diagonal subgroup K = U(1). By direct verification, we see
that there exist two C-algebra homomorphisms LG : A(M) ~ A(G) O A(M) and
RK : A(M) ~ A(M) g) A(K) such that

and

respectively. The above formulas mean LG() = x Q x + u O v etc. It is easy to
see that the quantum space M becomes a quantum (G, K)-space with these LG
and RK . We remark that LG and RK are compatible with the *-structure.
The left A(G)-comodule structure LG induces a right U,(su(2»-module

structure of A(M): cp. a = (a Q id) 0 LG(~) for a E Uq(su(2)) and cp E A(M). The
action of the generators of U,(su(2» is explicitly described as follows:

and

Here. k is an algebra automorphism of A(M) and both e and. f are twisted
derivations on A(M):

for any ~, 03C8 E A(M).
First we remark that the algebra of functions A(M) contains the commutative

subalgebra R = C[c, d] c A(M). Note that c and d are (G, K)-invariant and that
c* = c and d* = d. We will see in Section 3 that this subalgebra A is isomorphic
to the polynomial ring in two (commuting) indeterminates and that W coincides
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with the subalgebra of all (G, K)-invariants in A(M). The algebra W is regarded
as the algebra of functions on the euclidean space 1R2. Although the element d
does not belong to the center of A(M), we consider the quantum space M as the
total space of a family M ~ 1R2 of quantum (G, K)-spaces. In fact, the algebra
A(M) contains a quadratic relation which corresponds to a family of 3-spheres.
To be precise, define the ’real coordinates’ (03BE0, 03BE1, Ç2, 03BE3) in A(M) by

Then one sees that (2.1) and (2.2) imply the equation

In this sense, the quantum space M will be considered as the total space of a

family of quantum 3-spheres with deformation parameters (c, d). It does not

mean, however, that the parameters (c, d) can be freely specialized. We only
remark that the algebra A(M) reduces to the algebra of function on G = SUq(2)
by the specialization (c, d) = (1, 0). In fact there exists a unique surjective
homomorphism n : A(M) ~ A(G) of *-algebras such that 7r(x) = x, n(ù) = u,
rc(v) = v, 03C0() = y, n(c) = 1, n(d) = 0. This homomorphism n is also compatible
with comodule structures over A(G) and A(K).
The algebra A(M) has a left A(K)-comodule structure LK =

(nK 0 id) - LG : A(M) ~ A(K) 0c A(M) induced by the projection 03C0K in (1.2). In
the rest of this section, we study the two-sided A(K)-comodule structure of A(M).
The following lemma is directly proved by using the Diamond Lemma [B]

(see also Lemma 1.4 in [M1]).

LEMMA 2.1. The algebra A(M) is a free left or right R-module with basis
{ijrs; i, j, r, s ~ N, i = 0 or s = 0}. D

For each m, n E Z, we define the C-vector subspace A(M)[m, n] of A(M) by

Note that the C-subspace A(KBMIK) = A[O, 0] of all two-sided K-invariants
form a C-subalgebra of A(M) and each A(M)[m, n] becomes a A(M)[0, 0]-
bimodule.

PROPOSITION 2.2. (1) The C-algebra A(M) is decomposed into the direct sum
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(2) The subalgebra A(KBM/K) of A(M) is a polynomial ring W[z] = C[c, d, z]
where the element z is defined by

For each couple of integers (m, n) ~ Z2 with m ~ n(mod 2), we define an
element emn of A(M)[m, n] as follows:

PROPOSITION 2.3. If m ~ n (mod 2), A(M)[m, n] is a free left or right 9l[zJ-
module of rank one with basis emn:

Unless m = n (mod 2), A(M)[m, n] = 0.

Propositions 2.2 and 2.3 follow immediately from Lemma 2.1.

LEMMA 2.4. (1) The element z commutes with û, D, c and d.

Note that the right hand sides of (3) are polynomials in z with coefficients in
f7i = C[c, d]. Lemma 2.4 will be used in the calculation of spherical functions.

3. Spherical functions ~jmn

For each j ~ 1 2 N, n ~ Ij = {-j, - j + 1,..., j}, we define the element ~jjn of A(M)
by
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Since LG(x) = x ~  + u ~  and LG() = x ~ + u ~ , one can uniquely
determine a family of elements ~jmn e A(M) (m e 1) satisfying

where

Here the elements wjmn are the matrix elements of irreducible representations of
G, defined in (1.11).

LEMMA 3.1.

Proof. This follow, from the left A(G)-comodule structure of the algebra A(M).
Indeed we have

Since (0394~ id) 0 LG = (id Q LG)° LG, linear independence of the elements Wii.
implies (3.4). D

LEMMA 3.2. (1) ~jmn ~ A(M)[2m, 2n] for m, n ~ Ij.
(2) With the notation of Proposition 2.3, each ~jmn ( j ~ 12 N, m, n E Ij) is uniquely

written in the form

where fjmn(z), gjmn(z) ~ R[z] (z = c - ). Both fjmn(z) and gmn(z) have the following
expression:
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By (3.1) and (3.2) we get

Since (id ~ RK)°LG = (LG ~ id)°RK, linear independence of wjjm implies the
relation

Similar argument shows the relations

and

Here we used the property (id ~ nK) 0 0394(wjjm) = wjjm 0 t2m. Therefore we have the
relation

(2) This statement follows from the explicit description of the spherical
elements ~jmn in Theorem 3.5 below. 1--l

PROPOSITION 3.3. (1) For each j ~ 1 2 N, the elements ~jmn(m, n ~ Ij) are linearly
independent over rJ1l.

(2) For each j ~ 1 2 N, define the C-vector space (1) j;n as follows:
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Then each 03A6j;n is an irreducible left A(G)-comodule.
Proof. (1) Linear independence of the spherical functions ~jmn follows from

Proposition 2.2 and Lemma 3.2.
(2) By Lemma 3.1, the C-vector space 03A6j;n is a left A(G)-comodule with

respresentation matrix Wj = (wjmn)m,n~Ij. Irreducibility is implied by the classifi-
cation of the irreducible left A(G)-comodule in [Ml]. D

In view of Propositions 3.2 and 3.3, we call the elements ~jmn spherical
functions on M. Combining Lemma 3.2 (2) with Proposition 2.3, one sees that,
for each m, nE!N with m - nEZ,

where the index j ranges over the set {j~1 2 N; m, n ~ Ij}. Hence, by Proposition
2.2 we see that the spherical functions ~jmn (j ~ 1 2 N, m, n E Ij) form a R-basis for
A(M). Thus we have

THEOREM 3.4. The algebra A(M) is a free left or right R-module with basis 9jmn
(m, n E 1 j,j ~ 1 2 N). The algebra A(M) is decomposed into the direct sum of left A(G)-
comodules

The spherical functions ~jmn (j ~ 1 2 N, m, nE Ij) are described in terms of the big
q-Jacobi polynomials in the variable z = c - xy. The big q-Jacobi polynomials
are defined by

We remark here that our notation P(03B1,03B2)n is différent from that of [AA] by a
normalization constant.

THEOREM 3.5. For each a, 03B2, nE N, define the polynomial F(03B1,03B2)n(z; c, d: q) in
R[z] by

Then the spherical functions ~jmn (m, nE 1 j, jE 1 2N) are expressed as follows:
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where

By (3.20) it is easy to see that (~jmn)* = (-q)n-m~j-m, -n(cf. (4.14) in [K]). Hence
the cases (II) and (III) are equivalent to (IV) and (I), respectively. Since these two
cases (IV) and (I) can be proved similarly, we study only the case (IV) hereafter.
Under condition (IV) : m + n  0, m  n, by Lemma 2.4, one has
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Thus we rewrite (3.20) into

By using the transformation formula ((1.30) in [AW])

we get the desired result:

REMARKS. (1) When (c, d) = (1, 0), F(03B1,03B2)n(z; c, d: q) is expressed in terms of the
little q-Jacobi polynomials:

(2) The big q-Jacobi polynomials have a symmetry with respect to the

transformation (03B1, 03B2, c, d) ~ (03B2, 03B1, - d, - c). The above F(03B1,03B2)n(z; c, d; q) have the
symmetry

This follows from the identity
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which is a special case of Sears’ transformation formula (see (1.28) in [AW]).
The spherical functions ~jmn (m, n E Ij, j ~ 1 2 N) are also rewritten in terms of the

q-Hahn polynomials defined by

For the statement of the next theorem, we will use the notation ç = 03C8-d with
de N to refer an element ç in A(M) such that qJyd = 9. By Proposition 2.3, one
can easily check that the right multiplication ~ ~ qJyd: A(M) -+ A(M) is injective.
This justifies the notation 03C8-d in the sense that, if there exists an element

9 E A(M) with qJyd = 03C8, then such a ç is uniquely determined.

THEOREM 3.6. For j ~ 1 2 N and m, n E I , we have the expression

Proof. To get the above formula, we use the transformation formula

which is also a special case of the Sears’ transformation formula. Recall that

Applying (3.30) to (3.31) with n = k and b 1 = q03B1+1, we obtain
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Next we apply (3.27) to (3.32) with n = k, a = q-(03B2+k), so that

First we consider the matrix element ~jmn in the cases (III) with a = - m - n,
03B2 = n - n, k = j + n and (IV) with 03B1 = -m-n, 03B2 = n - m, k = j + m. In either
case, we have {k, 03B2 + k} = {j + m, j + n}. Then one can easily check that

by using (3.33) and Lemma 2.4. This gives the expression (3.29) for cases (III) and
(IV). Using the symmetry (3.26), we can rewrite (3.33) into the form

Applying (3.30) to (3.35) with n = a + k, b1 = q-(03B1+03B2+2k), we obtain

We now consider the matrix element ~jmn in the cases (I) with a = m + n,
03B2 = n - m, k = j - n and (II) with 03B1 = m + n, 03B2 = either
case, we have {03B1 + k, a + 03B2 + k} = {j + m, j + n}. Then one can derive (3.29) for
thèse cases by (3.36). D

We emphasize here that each spherical function ~jmn (j ~ 1 2 N, m, m ~ Ij) is
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the eigenfunction for the right action of the Casimir element

C = (qk2 + q-1k-2 - 2)/(q - q-1)2 + fe of the quantum universal enveloping
algebra U,(su(2». Through the expression in Theorem 3.5, this property of gj mn
gives an interpretation of the q-difference equation for the big q-Jacobi
polynomials:

where 7§ is the q-shift operator defined by (Tqf)(z) = f(qz). This equation is
proved by the same argument as in [M1]. We also get the Rodrigues formula
stated in Appendix of [NMO] by analysing the action of Uq(su(2)) on A(M).

4. Invariant measure and orthogonality

Let hM be the projection A(M) ~ R = 03A60;0 R in the decomposition (3.17) of
A(M). It is clear that hM is a homomorphism of two-sided -4-modules with
hM(1) = 1 and is (G, K)-invariant: For any ~ E A(M),

We call this 3f!-homomorphism hM:A(M) ~ R = C[c,d] the invariant measure
on M. Note that the above property characterizes hM. Moreover, this measure
hM is compatible with the Haar measure hG : A(G) - C on G in the sense that

for any ç E A(M).
The invariant measure hM can be represented by the Jackson integral on the q-

interval [ - d, c]. Recall that Jackson integral on the q-interval [ - d, c] is defined
by

where
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THEOREM 4.1. The invariant measure hM is factored through the projection
A(M) ~ A(M)[O, 0] = R[z] in decomposition (2.14). Furthermore, the values of
hM on W[z] are represented by the Jackson integral:

Proof. The former half follows from (4.1) and (4.2). To prove (4.6), we use the
action of Uq(su(2)) on A(M). Direct calculation shows that

By (4.1), we have h, (9. a) = hM(~)a(1)1 for any ~~A(M) and a~Uq(su(2)). This

implies hM((zn).e) = 0. Hence, by setting an = 1 - q2(n + 1) 1 - q2 hM(zn), we obtain a
recurrence relation

Then we have

The invariant measure hM:A(M) ~ R gives rise to the two hermitian forms
~ , ~L and , ~R on A(M) with values in R:

Note that the hermitian form ~ , ~L is conjugate linear in the left argument and
~ , ~R in the right.

THEOREM 4.2. (1) The spherical functions ~jmn (m, n ~ Ij, j ~ 1 2 N) are orthogonal
with respect to the hermitian forms ~ , ~L and ~ , ~R.

(2) The square lengths of ~jmn with respect to the Hermitian forms ~ , ~L and
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By the compatibility (4.3), we have the equality

The right hand side of (4.13) is calculated as follows by use of Theorem 3.7 in

[M1]:

Moreover, the orthogonality

follows from the fact ~j1*m1n1 ~j1m1n1 ~ A(M)[0, 2(n2 - n1)] and Theorem 4.1. Equ-
alities (4.14) and (4.15) prove the assertion (1) for ( , ~L. The square length
~~jmn, ~jmn~L is calculated as follows. First, we calculate the square length
~~jjn, ~jjn~L. Lemma 2.4 gives
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Theorem 4.1 and Theorem 1 in [AA1] lead the formula

Thus, by (4.16) and (4.17), we have

On the other hand, we have the equality

by (4.14). Hence,

Therefore, by combining (4.18) and (4.20), we deduce the desired result. The
statements for ~ , ~R are proved by an argument similar to that in Proposition
4 of [NMO]. D

Combining Theorem 3.5, Theorem 4.1 and Theorem 4.2, we get the orthogon-
ality relation for the big q-Jacobi polynomials.

As a corollary to the proof of Theorem 4.2, we have

PROPOSITION 4.3. For any j ~ 1 2 N and m, nE/j, one has
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Theorem 3.6 and Proposition 4.3 imply the orthogonality relation for the q-
Hahn polynomials:

for integers m, n and N such that m ~ n and 0  m, n , N. This generalizes the
interpretation of a q-analogue of Krawtchouk polynomials, due to

Koornwinder [K], to the q-Hahn polynomials.

REMARK. By means of the realization of A(M) in Section 5, it is also possible
to give an interpretation of the dual q-Hahn polynomials. It seems difficult to
carry this out within this algebra A(M).

5. Realization of A(M) on SUq (2)

The algebra A(M) can be constructed from the algebra of functions A(G) on
G = SUq(2) by extending the coefficient ring.
We consider the polynomial ring b = C[03B1,03B2,03B3,03B4] with four commuting

indeterminates a, p, y and à and define the *-structure of W by 03B1* = £5, 03B2* = -03B3.
Let 2: W - W be the C-algebra automorphism of W such that

By adjoining this automorphism 2 to W, we construct a noncommutative
Laurent polynomial ring b[03BB, 03BB-1] = B ~C with the commutation
relation 03BB.a = 03BB(a)a.03BB for a~b. Then the algebra b[03BB,03BB-1] has a natural *-
structure characterized by the condition 2* = 2 - 1.
Next we consider the extension A(G) ~C b[03BB, 03BB-1] of the C-algebra

A(G) = A(SUq(2)). Here we define the algebra structure of A(G) 0c b[03BB, 03BB-1] so
that the elements of A(G) commute with those of b[03BB, 03BB-1]. Note that the
algebra A(G) 0 b[03BB, 2 -lJ has a natural *-structure induced from those of A(G)
and b[03BB, 03BB-1], In what follows, we consider A(G) and b[03BB, 2 -lJ as subalgebras
of A(G) ~Cb[03BB, 03BB-1] and use frequently the abbreviation (p. a instead of ~ Q a
for 9 c- A(G) and a ~ b[03BB, 03BB-1].

It should be emphasized that some operations on A(G) are naturally extended
to A(G) ~Cb[03BB, 03BB-1]. For example, we have the following three b[03BB, 03BB-1]-
homomorphisms :
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Note that the first two are algebra homomorphisms. The algebra
A(G) Q b[03BB, 03BB-1] becomes a left A(G)-comodule endowed with the homomor-
phism A Q id of (5.2).
We can realize the algebra A(M) defined in Section 2 as a C-subalgebra of

A(G) 0c b[03BB, 2 -lJ. First, define the four elements X, U, Vand Y of A(G) 0 W by

THEOREM 5.1. There exists a unique C-algebra homomorphism
p: A(M) ~ A(G) ~C b[03BB, 03BB-1] such that

Moreover p is compatible with the *-structure.

Proof. Let be the C-algebra automorphism defined by
Then one can directly show that

if 9 and 03C8 are linear combinations of the generators x, u, v, y. Moreover one has

where and c are regarded as automorphisms of A(G) Q 16. By using formulas
(5.7) and (5.8), one can directly check that the set of elements X 03BB-1, U03BB, V03BB-1,
Y À in A(G) ~C b[03BB, 03BB-1] satisfies the defining relations of A(M). Compatibility
with the *-structure is also directly verified. 0

By the definition (2.4), it is clear that p is a homomorphism of left A(G)-
comodules. Note also that the commutative subalgebra R = C[c, d] of A(M) is
identified with the subalgebra 03C1(R) = C[ab, - f3y] of 03B2, so that p is a R-

homomorphism of two-sided R-modules.

PROPOSITION 5.2. (1) The invariant measure hM on A(M) is compatible with
hG Q id of (5.4). Namely one has
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(2) The homomorphism 03C1: A(M) ~ A(G) ~C b[03BB, 03BB-1] defined by (5.6) is

injective.
Proof. (1) Since p: A(M) A(G) Q b[03BB, 03BB-1] is a homomorphism of left A(G)-

comodules, we have 03C1(03A6j;n) ~ wj ~ b[03BB, 03BB-1] for all j ~ 1 2 N, nE Ij. Hence

(hG Q id) 0 03C1(~jmn) = 0 for j &#x3E; 0 and m, n E Ij. This shows that equality (5.9) holds
for any ~ ~ A(M) since (hG ~ id)°03C1 is an R-homomorphism and

(hG Q id) 0 03C1(1) = 1.

Equality (5.9) implies that

for any ç, t/1 E A(M). Hereafter, we regard A as the subalgebra C[ab, - f3y J of
b[03BB, 03BB-1 1 J. Suppose that qJ is a finite sum

Then by using Theorem 4.2 and (5.10), we have

Thus we have amn = 0 for all j, m, n if p(g) = 0, which shows that p is injective.
n

Proposition 5.2.(2) means that the subalgebra of A(G) Oc b[03BB, 03BB-1] generated
by the six elements in (5.6) is isomorphic to A(M). In what follows, we identify
the algebra A(M) with this *-subalgebra of A(G) ~C b[03BB, 03BB-1]. Under this

identification, we have LG = A Q id and hM = hG Q id. We remark that the C-
algebra homomorphism e 0 id: A(M) ~ b[03BB, 03BB-1] induced from (5.3) is de-

scribed as

In this realization of A(M), we can consider the connection formula between
~jmn and wjmn. The connection coefficients are expressed by Stanton’s q-
Krawtchouk polynomials [S] defined by

where k and N are integers such that
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THEOREM 5.3. For eachjE1N and m, nEIj, we have

where

by (3.4). Applying the operator id Q 8 Q id on the both sides, we have

The above expression (5.16) of cm" is thus obtained from Theorem 3.6 by using
(5.13). D

Combining Theorem 5.3 and Proposition 4.3, we get the orthogonality
relation for the Stanton’s q-Krawtchouk polynomials.

PROPOSITION 5.4. Let k, j and N be integers such that 0  k, j  N. Then we
have
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