Non-existence of singular cusp forms
Compositio Mathematica, Tome 83 (1992) no. 1, pp. 43-51.
@article{CM_1992__83_1_43_0,
     author = {Li, Jian-Shu},
     title = {Non-existence of singular cusp forms},
     journal = {Compositio Mathematica},
     pages = {43--51},
     publisher = {Kluwer Academic Publishers},
     volume = {83},
     number = {1},
     year = {1992},
     mrnumber = {1168122},
     zbl = {0768.11017},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1992__83_1_43_0/}
}
TY  - JOUR
AU  - Li, Jian-Shu
TI  - Non-existence of singular cusp forms
JO  - Compositio Mathematica
PY  - 1992
SP  - 43
EP  - 51
VL  - 83
IS  - 1
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1992__83_1_43_0/
LA  - en
ID  - CM_1992__83_1_43_0
ER  - 
%0 Journal Article
%A Li, Jian-Shu
%T Non-existence of singular cusp forms
%J Compositio Mathematica
%D 1992
%P 43-51
%V 83
%N 1
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1992__83_1_43_0/
%G en
%F CM_1992__83_1_43_0
Li, Jian-Shu. Non-existence of singular cusp forms. Compositio Mathematica, Tome 83 (1992) no. 1, pp. 43-51. http://archive.numdam.org/item/CM_1992__83_1_43_0/

[1] R. Howe, θ-series and invariant theory, Proc. Symp. Pure Math. 33, AMS, Providence, 1979. | Zbl

[2] R. Howe, L2-duality in the stable range (preprint).

[3] R. Howe, A notion of rank for unitary representations of classical groups, C.I.M.E. Summer School on Harmonic analysis, Cortona, 1980.

[4] R. Howe, Automorphic forms of low rank, in: Non-Commutative Harmonic Analysis, Lecture Notes in Math. 880, pp. 211-248, Springer-Verlag, 1980. | MR | Zbl

[5] H. Jacquet and J. Shalika, Euler products and the classification of automorphic representations, I, Amer. J. Math. 103 (1981), 499-557. | MR | Zbl

[6] M. Kneser, Strong approximation, Proc. Symp. Pure Math. Vol. IX, 187-196. | MR | Zbl

[7] J.S. Li, Singular unitary representations of classical groups, Invent. Math. 97, 237-255 (1989). | MR | Zbl

[8] J.S. Li, On the classification of irreducible low rank unitary representations of classical groups, Comp. Math. 71, 29-48 (1989). | Numdam | MR | Zbl

[9] J.S. Li, Distinguished cusp forms are theta series, Duke Math. J. 59, No. 1 (1989), 175-189. | MR | Zbl

[10] Maass, H., Siegel's modular forms and Dirichlet series, Lecture Notes in Math. 26, Springer, 1971. | MR | Zbl

[11] Rallis, S. and Piatetski-Shapiro, I.I., A new way to get an Euler product, J. Reine Angew. Math. 392 (1988), 110-124. | MR | Zbl

[12] Piatetski-Shapiro, I., Oral communication.

[13] I. Satake, Some remarks to the preceding paper of Tsukomoto, J. Math. Soc. Japan 13, No. 4, 1961, 401-409. | MR | Zbl

[14] R. Scaramuzzi, A notion of rank for unitary representations of general linear groups, Thesis, Yale University, 1985. | Zbl