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In this paper we develop the theory of the Gauss map and supporting functions
of hypersurfaces in a compact Lie group G. If M is such a hypersurface, then left
and right Gauss maps from M to the unit sphere of the Lie algebra g are defined
as 03B1l(x) = x-1n(x), 03B1r(x) = n(x) · x-1, where n(x) is the normal to M at x.

Supporting map r is defined by r = ar 0 ocî 1. We show that r determines a family
of symplectomorphisms on the orbits of adjoint representations, endowed by the
Kyrillov-Kostant symplectic structure. This is true for "nondegenerate" M. We
show that the maximal degree of degeneracy is such that al(M) intersects an
orbit in g by a coisotropic manifold which may be Lagrangian.

Conversely, we present a construction which prescribes, to a symplecto-
morphism of an adjoint orbit or to a generic pair of Lagrangian submanifolds, a
foliation in G. This can be looked at as a generating object in the classical sense
of Hamilton-Jacobi. This construction works in the case of noncompact G and
even if G is infinite-dimensional (we shall pass to coadjoint orbits in these cases).
The exposition for the infinite-dimensional case will appear later.
We derive from our approach the full description of flat surfaces in S3, which

were investigated earlier by Kitagawa and others ([Kit]). We show that Gauss
images of such a surface are two smooth curves and some curvature inequalities
are satisfied. Conversely, every two such curves determine a flat foliation in S3
with an exceptional torus deleted, and we state the necessary and sufficient
conditions for existence of a compact leaf.

1. Basic equations

Consider the standard euclidean sphere S3, embedded in the quaternionical
space R4, with the induced structure of the compact Lie group. We will identify
the Lie algebra with the tangent space R3 at 1, consisting of imaginary
quaternions. Let S2 be the unit sphere in R3. We will freely identify the tangent
vectors to S3 with the elements of R4 and the left and right actions of S3 in TS3
with the usual quaternionical multiplication in R4.
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Let M be a smooth oriented surface in S3 and for x E M let n(x) be the positive
normal vector to M at x. We define left and right Gauss maps as a(x) = x-1n(x),
03B2(x) = n(x)x -1 both maps from M to S2.

DEFINITION. A point x E M will be called (left) regular if the Gauss map a is
the local diffeomorphism at x.

DEFINITION. The support map of M at the regular point x is the locally
defined smooth map T = f3 0 a -1 from some neighbourhood of a(x) to S2.

If all x ~ M are regular then r is globally defined in S2. Let 03BD ~ S2, v = a(x), and
x is regular, then evidently r(v) = xvx-1 = (Ad x)v. From now on all com-

putations will be made in some neighbourhoods of v and x. Let X E 4S2 and let
us write simply x = x(v) instead of x = a -1(v). Differentiating the equality
xv = -c(v)x along X we obtain x’Xv + xX = 03C4*Xx + 03C4(v)x’X where 03C4* : T03BDS2 ~ T z(v) S 2
is the derivative of 03C4. Multiplying by x-1 from the left and taking into account
that x-1 03C4(03BD) = vx-1 we will have x-1x’Xv - vx-1x’X + X = x-103C4*Xx or

[x-1x’X, v] + X = (Ad x-1)03C4*X. From now on denote by J,, or simply J the
linear orthogonal operator in 4S2 defined by the formula J03BD(·)  1 2[.,03BD] (we use
the Lie algebra brackets in R3). Further, since x’X ~ TxM, n(x) is orthogonal to
TxM and x -1 n(x) = v, we have x -1 x’X E 4S2. We will denote the linear operator
X ~ x-1x’X in TvS2 by 03A6v or 03A6. Thus we obtain

where Ev is the identity map. Note that j2 = - E,, .
Now we want to use the "integrability" of the distribution of the tangent

planes to M to obtain additional equations containing 03A6. For this purpose we

will compute the second fundamental operator of M.

LEMMA 1. Let G be a compact Lie group supplied with bi-invariant positive
Riemannian metric and the corresponding Levi-Civitta connection V. Let

x(t) : [0, d] ~ G, x(O) = e, and v(t) : [0, d] ~ g be smooth curves and let n(t) = x(t)v(t)
be the left shift of v(t) so n(t) is a vector field along x(t). Then

Proof. We can decompose v(t) as v(O) + tp(t), p(0) = v’(0). Since x(t)v(O) is the
restriction of the left-invariant vector field on G, and ~XY = tEX, Y] for left-
invariant fields ([Ar]), then ~x’(0)x(t)v(0) = 1 2[x’(0), v(O)]. It is easy to show that
~x’(0)(tx(t)03BC(t)) = 03BC(0) which proves the lemma.
Now let x E M be regular, v = 03B1(x) X ~ TvS2 and Z = x*(X) (expressions xi

and x* (X) means the same vector in Tx M, but we prefer the former expression
when computations are made in 1R4). Let v(t) be a smooth curve tangent to X,
v(o) = v, and x(t) = a-l(v(t)). Since n(x(t)) = x(t)v(t), the second fundamental
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symmetric operator in Tx M can be expressed as x’(0) ~ ~x’(0)x(t)v(t). Let

x(t) = x-1(0)x(t), then (0) = 1 and by the previous lemma we will have

~x’(0)x(t)v(t) = X(0)~(0)(t)v(t) = 2x(o)[x’(o), 03BD(0)] + x(0)v’(0) = 1x(0)

x [x-1(0)x’(0), v(0)] + x (O)v’(O) = 1 2x[x-1 Z, v] + xX.

So the second fundamental operator Ax has the form Ax(Z) = 1 2x[x-1Z, v] + xX.
Since the left shift X H xX orthogonally maps Tv S2 onto T M, we can pull back
the operator Ax to TvS2 and denote AvX = x-1Ax(xX). As Z = x*X and
x-1 Z = x-1 x*X = 03A6vX by the definition of 03A6v, we obtain that

or

because (D, is invertible, and

Recalling (1), we can write

THEOREM 1. For any regular x E M the support map 03C4 is an area-preserving map
from a neighbourhood of v = a(x) to a neighbourhood of 03C4(v) = f3(x).

Proof. As we have just seen,

(Ad x-1)°03C4* = (Av + Jv)(Av - Jv)-1. (6)

As Ad x is the rotation of S2 it is sufficient to show that det((Ad(x-1)°03C4*) = 1.
But for a symmetric operator A in the euclidean oriented 2-space and the

"multiplication by ~-1 in J, having the matrix ( 1 1 0) in every oriented
orthonormed base, det(A + J) = det A + 1, which proves the theorem.

Let K(x) be the sectional curvature of M at x, then by the Gauss formula,
K(x) = det Ax + 1. We can replace Ax by Av and write
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when x e M is regular and v = a(x). Let ds and dv be the area 2-forms on M and
S2 respectively. Since qJv = x - 1 x*, we see that in some neighbourhoods of x, v,
(03B1-1)* ds = (det 03A6) dv, so 03B1* dv = (det 03A6-1) ds. Using (5) and (7) we obtain
a*dv=Kds.

THEOREM 2. For any M, the following "Gauss formula" is valid:

Proof. If x E M is regular, we have just obtained that a* dv = K ds in some
neighbourhoods of x and v. By Theorem 1, a* dv = 03B2* dv because 03C4 = 03B2° 03B1-1 is
area-preserving. Note that the regularity of x is equivalent to (a* dv)x i= 0. So (8)
is valid where the left side ~ 0. It is clear that we could start from f3 instead of a,
so (8) is valid where 03B2* dv ~ 0. Hence a* dv = 03B2* dv everywhere. Approximating
M by analytic surfaces we see (8) to be valid if a* dv or 03B2* dv is not identically
equal to zero. So the only thing remaining is to show that if a* dv = 03B2* dv = 0 on
M then K = 0. We will show it later in Section 5. Note that the implication
K = 0 =&#x3E; a* dv = 03B2* dv = 0 is already shown.

COROLLARY. A point x ~ M is regular f and only if K(x) ~ 0. If M is compact
and K ~ 0 on M then K &#x3E; 0, M is diffeomorphic to S2 and 03C4 is the globally defined
area-preserving diffeomorphism of S2.

Proof. The only thing that needs to be proved is K ~ 0 =&#x3E; K &#x3E; 0. But if K  0

then the Euler number x(M)  0 by the Gauss-Bonnet formula, which contra-
dicts with a : M ~ S2 being the diffeomorphism.
We will conclude this section with some curvature formulas. Let H(x) be the

mean curvature of M at x, so

where Àx, /-lx are the eigenvalues of A,,. If x is regular and v =- a(x), then A, can

be represented by the matrix (03BB 0 :) in some oriented orthonormed base,
so by (1), (Ad x -1) 0 L* will be represented by the matrix

It follows immediately that

We will use these formulas in Section 4.
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2. Some properties and examples

Let y(x, t) be the normal geodesic, orthogonal to M at the point x = y(x, 0). It is
clear that y(x, t) = x exp tv, where v = a(x). Given e &#x3E; 0 we define the equidistant
Mg as the parameterized surface x H y(x, e) (we do not use the usual metric
definition to avoid the "boundary effect" when M is noncompact). To be sure
that M, is the embedded surface, we always assume that e is sufficiently small
and M is a proper open set of some other embedded surface M. Let 03C003B5 : M03B5 ~ M
be the natural projection.

PROPOSITION 1. aE = a o 03C003B5, Pe = po ne, iE = i.
Proof. It is clear that the normal vector to Mg at the point 03B3(x, 03B5) is

d/(de)y(x, e). As y(x, t) = x exp tv, we see that n03B5(03B3(x, 03B5)) = x exp ev. v so

ae(y(x, 03B5)) = (x exp ev) -1 x exp ev. v = v. This proves the lemma for v = a(x) and
x = ne(Y(x, e)).

This proposition shows that given 03C4, we cannot expect the correspondent M
to be unique, because determines the "equidistant foliation" rather than the

single leaf M. This is exactly so, as we will see later in Section 5. The situation
becomes différent, however, if we put additional restrictions on M.

PROPOSITION 2. If K ~ 0 on M then M is minimal if and only if (Ad x-1) °03C4*
is symmetric for all v E a(M).

Proof. This follows immediately from (10) and the fact that a linear operator B
in the euclidean 2-space is symmetric if and only if Tr BJ = 0.
The two conditions: (1) (Ad x)v = 03C4(v) and (2) (Ad x-1) ° 03C4* is symmetric

determine x=x(v). Namely, 1:*: TvS2 ~ T03C4(03BD)S2 admits the polar decomposition
03C4* = UvPv where Pv: TvS2 ~ TvS2 is symmetric and positive and

Uv : TvS2 ~ 4(V)S2 is orthogonal. It follows immediately that Ad xl TvS2 = Uv
which determined Ad x, and, consequently, determines x up to the (±1)
multiplier.
The condition, xv is normal to M at x, means that there are some equations

the support function (map) 1: of the minimal M must yield.

PROPOSITION 3. M has the constant curvature if and only if
Tr(Ad x-1)° 03C4* = const.

Proof. This follows from (10). One can see that the condition

Tr(Ad x-1)o03C4* = C determines x(v) by 1:, so some additional equations on 1: of
the sh-Gordon type must exist.

Let us look at some examples. If M is the sphere S(1, r) with center 1, then 1: is
the identical map. If M is the sphere S(u, r) with center u then it can be

parameterized as
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so i is an isometry. Let M be the quadric x20-xx22-x23 = 0 with two singular
points + (0, 1, 0, 0). Then the direct computation shows that

where

for some a(v1), b(v1) satisfying a2(v1) + b2(v1) = 1 (namely,
and

DEFINITION. A Blaschke product is a map of the form

03C4 = 03C8-11 03C1103C8103C8-1203C1203C82···03C8-1m03C1m03C8m where t/Jk are area-preserving diffeomorph-
isms of S2 and p, have the form (11) with some C~-functions a(v1), b(v1).

CONJECTURE. Every area-preserving diffeomorphism of S2 is a C’-limit of
Blaschke products.

3. The description of flat surfaces

LEMMA 2. For any M and x E M

We will prove the lemma in a more general context in Section 5. Assume that
M is flat, so K = 0 and rank a*  2, rank 03B2*  2 by Theorem 2. Then we see that

a*, 03B2* have the constant rank one and that their kernels are asymptotic
directions in TxM. So the next proposition is valid.

PROPOSITION 3. If M isflat, then a(M) and 03B2(M) are immersed curves in S2
(maybe, with self-intersections). Both maps a, fi foliate M onto foliations with
asymptotical lines as their leaves. In particular, every asymptotic line is closed
in M.

We are now able to prove the main result of Kitagawa ([Kit]):

THEOREM 3 (Kitagawa). If M isflat and compact, then all its asymptotic lines
are periodic.

Kitagawa proved this by using special coordinate systems in his profound
investigation of flat surfaces. In this case both a(M), 03B2(M) are closed immersed
curves in S2.

PROPOSITION 4. If M is flat, then for sufficiently small lel, all its equidistants
M, are also flat.
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Proof. By Theorem 2, K = 0 ~ rank a*  2 on M. Since oc, = a 0 n, (see
Proposition 1) we have rank 03B103B5  2, so Kf. = 0. Moreover, the curves 03B103B5(M03B5),
03B203B5(M03B5) coincide with a(M), 03B2(M).

In return, we will see in Sections 5 and 6 that any two curves in S2 determine
some foliation with flat leaves in an appropriate open set in S3. Given some
additional conditions, some leaves of this foliation turn out to be compact.

THEOREM 4. In the conditions of Theorem 3, every two unknotted asymptotic
lines belonging to the same (left or right) foliation are linked in S3.

Proof. Let ô(t) be an asymptotic line belonging to the left foliation, so

a(b(t)) = v = const. It follows that 03B4’(t) ~ Ô(t)v in T03B4(t)S3, because n(t) = b(t)v by the
definition of the map a. Consider the left-invariant unit vector field vv(x) = xv.
Let Vv(x) be the plane distribution, orthogonal to vv(x). It is well-known that Vv
determines the standard contact structure in S3 (and also the canonical

connection in the Hopf principal SO(2)-bundle over S2). We see that b(t) is a
horizontal curve of this contact structure. By the Bennequin theorem ([Ben]) the
linking number between ô(t) and its small shift b1(t) in the direction n(03B4(t)) is non-
zero. Consider a unit vector field m(t) along b(t) defined by the following
conditions: (1) m(t) E T03B4(t)M and (2) m(t) 1 ô’(t). It is evident that every leaf of the
left foliation which is sufficiently close to b(t) can be isotopically deformed to the
shift b2(t) of b(t) in the direction m(t), such that it will never intersect 03B4(t). Let
p03C3(t), 0  03C3  n/2, be the vector field cos am(t) +sin un(t) along ô(t). Since

n(t) 1 m(t), the shift 03B403C3(t) in the direction pa( t) determines the isotopy between
b1(t) and b2(t) which proves the theorem.

Using the methods of Section 5, one can show that every embedded

horizontal curve of the standard contact structure in S3, having the "good" (with
only transversal self-intersections) front in S2, lies on some flat surface.

4. Curvature of equidistants and the Weyl tube’s volume formula in S3

LEMMA 3. In the notation of Proposition 1, let Kf. be the (sectional) curvature of
Mg, let x e M be regular and let 03C003B5(x03B5) = x. Then

Proof. Again denote v = a(x), so x, = x exp ev by the proof of Proposition 3. We
are going to use (10), so we write
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Assume that (Ad x-1)°03C4* is represented by a matrix a b in some oriented
orthnonormed base. Since Ad exp( - Ev) = exp ad( - Ev) = exp 203B5Jv and Jv is

represented by 
0 1), the matrix of the operator Adexp(-ev) will be

Hence

From (10) we derive that

so

which is equivalent to (12).
Moreover, in the same way we obtain

LEMMA 4. If S,, S are respectively the areas of ME, M, then

Proof. Assume first that K ~ 0 on M, so all x ~ M are regular. From
Proposition 1 and Theorem 2 it follows that

is the area 2-form on M - 03B5. Hence
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which together with (12) implies (14). In the general case, we can divide M into
small pieces Nk. Every such piece can be deformed in such a way that its

curvature becomes non-zero, which enables us to apply (14). By the limit

procedure, (14) remains valid for Nk, and, by additivity, for the whole of M.

COROLLARY 1. If M is compact and X(M) is its Euler number, then

COROLLARY 2. If M is flat, or M is compact and X(M) = 0, then

(d2/d03B52S03B5)03B5=0 &#x3E; 0. Hence no open subset U of S3 can be fibrated over S’ by flat
equidistant fibers.

5. Gauss map theory for hypersurfaces in a compact Lie group

Let G be a compact Lie group supplied with bi-invariant Riemannian metric
(which is unique up to the constant multiplier if G is simple). Let S be the unit
sphere in the Lie algebra g. The natural isomorphism between g and g* enables
us to pull back to g the canonical Kyrillov-Kostant symplectic forms on the
coadjoint orbits in g*. If v ~ S, P(v) is its adjoint orbit in S, V = TvP ~ 7§S,
Jv : TvS ~ TvS is defined as Jv = - 1 2 ad v, then we have the orthogonal decom-
position 7§S = TvP Ef) ker Jv and for X, Y E TvP the value of the K - K symplectic
form Qy will be 03A9v(X, Y) = (J-1v X, Y), where J-1v X means any vector Z such
that JvZ = X.

Let M be an oriented hypersurface in G. We define the Gauss maps

a, 03B2: M ~ S and the support map S ~ U  S in the neighbourhood of a(x) where
x is a regular point of M, exactly as in Section 1. Using any exact unitary
representation of G, we can look at G as a subgroup of the group of invertible
elements in some algebra R. This enables us to make computations which lead
to (1), where Cy is defined in the same way. All formulas (2)-(6) remain valid, too.
Since 03C4(v) = (Ad x)v where x = 03B1-1(v), every adjoint orbit in S is invariant under
the map 03C4.

THEOREM l’. If x E M is regular, v = a(x) then the restriction 03C4|P(v) is the

symplectomorphism from a neighbourhood of v to a neighbourhood of 03C4(v) in the
symplectic manifold P(v).

Proof. If x is fixed then of course Ad x: P(v) - P(v) is the symplectomorphism.
Using (6) we reduce the statement of the theorem to the following lemma.

LEMMA 5. i,et W be an euclidean space, let J, A be respectively a skew-
symmetric and symmetric operators in W, let V = J(W), let Q: V A V ~ R be the
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symplectic form defined as S2(X, Y) = (J-1 X, Y). Then if A - J is invertible, then
the operator (A + J)(A - J)-1 has determinant 1, leaves V invariant and preserves
the form Q.

Proof. Assume first that J is invertible, so V = W (and dim W is even). For
À = + 1 and Z, H E W we have

Since A is symmetric and J is skew-symmetric, the last two terms vanish, so
the right side does not depend on 03BB, which proves the lemma. In the general case
we see that V is invariant because (A + J)(A - J)-1 = 2J(A - J) - + E. Disturbing
J to be invertible and expanding W to W ~ R if dim W is odd we reduce this
case to the previous one.

THEOREM 2’. For any M, oc* dv = 03B2* dv.
Proof. This follows from Lemma 5 (see the proof of Theorem 2).
The full analogue of Proposition 1 is valid, too. Now we will formulate the

analogue of Lemma 2.

LEMMA 2’. Let x E M, v = a(x) and let P(v) be the adjoint orbit of v in S. Then

(1) 03B1*TxM ~ TvP(v) is coisotropic in the symplectic space T,,P(v), hence

dim 03B1*TXM  1 2 dim P(v),
(2) if a*X = 0 then (AxX, X) = 0,
(3) dim(ker 03B1*|TxM n ker 03B2*|TxM)  dim S - dim P(v).

Proof. Let X E TxM and x(t) be tangent to X. Let v(t) = 03B1(x(t)), so

n(x(t)) = x(t)v(t), hence ~x’(0)n(x(t)) = ~x’(0)x(t)v(t). The left side is equal to Ax(X),
while the right side is equal to xJv(x-1 X) + xv’(0) by Lemma 1. It is clear that
v’(O) = a*X, so denoting Z = x - ’X we have Ax(X) = xa*(X) + xJvZ. Similarly,
Ax(X) = 03B2*(X)x - J03BCWx, where 03BC = 03B2(x), W = Xx-1, if we use an evident ana-
logue of Lemma 1. To prove (3) we note that 03B1*(X) = 03B2*(X) = 0 implies
(Ad x)JvZ = - J 1L W or (Ad x)[Z, v] = - [W, y], which together with (Ad x)v = 03BC,
(Ad x)Z = W and Ad x’s being the automorphism of g implies JvZ = J 1L W = 0 so
dim(ker a* n ker 03B2*)  dim ker Jv = dim S - dim P(v). Further, if a*(X) = 0 then
Ax(X) = xJvZ hence (AxX, X) = (JvZ, Z) = 0, because Jv is skew-symmetric. At
last, it is not hard to show (1) following the proof of Lemma 5.

COROLLARY 1. Clean intersections of the Gauss map’s images a(M), 03B2(M) with

every adjoint orbit in S are either empty sets, or coisotropic varieties.

So the "extremal" case will occur if these intersections are Lagrangian. This
does happen, as we will see soon. We now remark, that if L, = 03B1*TxM ~ TvP(v)
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and L2 = 03B2*TxM ~ 7§P(v) are Lagrangian, then (Ad x)L1 is transversal to L2, as
similar arguments show.

COROLLARY 2. If M is compact and its second fundamental form is positive then
M is diffeomorphic to the sphere Sd’m G -1 by any of Gauss maps.

Proposition 1 holds without any alteration. It follows that we must expect
that the support map T determines an equidistant codimension 1 foliation in G
rather than a single hypersurface. As we saw in Theorem l’, the support map of a
surface M in the neighbourhood of a regular x ~ M can be looked at as a family
of adjoint orbit’s symplectomorphisms. It seems to be a complicated problem to
reconstruct M from these data. However, if we have a symplectomorphism of a
single orbit P, it does determine some foliation which we will call to be of P-type,
because the image of the Gauss maps a, fi in S coincide with P. In the case G = S3
it does not put any restrictions, because there is only one orbit in S2.

THEOREM 5. Let U1, U2 be open sets in P, let r: U1 ~ U2 be a symplecto-
morphism and let 03C8(·) be the following multivalued function: 03C8(x) = set of the fixed
points of (Ad x-1)°03C4. If U c G is an open set and v(x) is a smooth branch of 03C8(x),
then the hyperplane distribution V(x) orthogonal to x. v(x) is integrable in U and
the support map of its leaves coincide with r where both maps are defined.

Proof. For any Riemannian manifold N and a unit vector field n(x) the second
fundamental operator Ax: V(x) ~ V(x) in the orthogonal hyperplane can be
defined by the formula X H ~Xn. It is well-known that the distribution V(x) is

integrable if and only if Ax is symmetric and the correspondent foliation is

equidistant if and only if V nn = 0. In our case the verification of the conditions
can be easily made if we follow the proof of Theorem l’in the opposite direction.

EXAMPLE. Let G = S3 x S3, so g = R3 0 R3. Take P = S2 x S2 ~ S = SS and
03C4: (p, q) ~ (q, p). Then the leaves of the correspondent foliation will be

{(x, y) | Tr Ad x - Ad y = consti.
We will say briefly about the non-compact case a bit later and now we

describe a "flat" situation.

THEOREM 6. Let L1, L2 be Lagrangian submanifolds in P and let 03C8(·) be the
following multivalued function: 03C8(x) = (Ad x)L1 n L2. If U c G is an open set and
v(x) is a smooth branch of 03C8(x) such that (Ad x)L1 intersects L2 transversally at
(Ad x)v(x) then the hyperplane distribution V(x) is integrable and the images of a, 03B2
lie in L1, L2.

Proof. Let x ~ U, v = v(x), Z E TvS, so xZ = X E V(x). Let x(t) = x exp tZ. Then
by Lemma 1 Ax(xZ) = xv’xZ + xl vZ. As y(t) = (Ad(x exp tZ))v(x exp tZ) E L2,
we see that d/dtt = 0 y(t) E T(Ad x)vL2. The left side is equal to

d/dtt = o(Ad x · exp ad(tZ))v(x exp tZ) = Ad x(v’xZ + ad Zv) = Ad x(v’xZ + 2JvZ). Let
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l 1 = TvL1, 12 = (Ad x-1)T(Ad x)vL2, l = TvP, then 1 = l1 EB 12 by transversality and we
see that v’xZ + 2JvZ ~ l2. Also v’xZ ~ l1 because v(x)eLi for all x. Let pi: l ~ li,
i = 1, 2 be natural projections, then we see that p1(JvZ) = - 1 2 v’xZ,
p2(JvZ) = JvZ + 1 2v’xZ· Hence x-1 Ax(xZ) = v’xZ + JvZ = (-2p1 +ev)JvZ. So we

must show that the operator Z ~ (- 2p1 + Ev)JvZ is symmetric, or

(( - 2pi + Ev)JvZ, H) = (( - 2p1 + Ev)JvH, Z). Let Z1 = JvZ, H1 = J,,H. By the for-
mula 03A9(X, Y) = (J-1 X, Y), ((-2p1 + Ev)JvZ, H)= -03A9((-2p1 + Ev)Z1, H1). So

we have reduced the statement of the theorem to the following: given a
Lagrangian decomposition l = l1 ~ l2 of a symplectic space (1, Q) to show that
03A9(AX, Y) = Q(A 1’: X) where A = - 2p1 + E = p2 - p1, which is obvious.

In the case G = S3 we have det Jv =1 and det(p2-pl)= -1, so det Ax = - l.
This enables us to finish the proof of Theorem 3 in Section 1. Indeed, if

rank a* = rank 13* = 1, then M is a leaf of the corresponding foliation constructed
by a(M), 03B2(M), and K(x) = det Ax + 1= 0, hence M is flat.
We will say some words about the non-compact case. If G is an arbitrary real

Lie group, then the torsion-free connection V can be defined by the formula
Vx Y = 1 2[X, Y] where X, Y are left-invariant vector fields. If U c G is an open
set and cv(x) is a 1-form in U which is nowhere zero, then the hyperplane
distribution V(x) = ker cv(x) is integrable if and only if the second fundamental
form Ax(X, Y) = (Vxco)(Y) is symmetric on V(x). Using this tool one can show
that Theorems 5, 6 still hold if we replace the words "adjoing orbit P" to
"coadjoint orbit g*. However, the path from a hypersurface in G to the orbits
symplectomorphisms seems to be lost for there is no rasonable way to define the
Gauss maps.

EXAMPLE. Let (W, Q) be a symplectic space, let n = W ~ RE be the Geisenberg
algebra with the Lie brackets [x, y] = n(x, y)E, and let N be the correspondent
Lie group. Let t be the second coordinate in n* ~ e R. Then each hyperplane
t = const ~ 0 is an orbit in n* and each pair L1, L2 of transversal Lagrangian
affine subspaces in W defines a codimension 1 foliation in the whole N.

6. Existing of compact leaves

In this section we deal only with G = S3 or G = SO(3) = S3/Z2. Let us start with
the flat case. If M is a flat surface in S3 then by Corollary 1 of Lemma 2’,
(Ad x)a(M) and 03B2(M) are transversal at (Ad x)v(x), where v(x) = a(x). So each flat
M can be obtained by the construction of Theorem 6. Denote 03B1(M) = L1,
f3(M) = L2 and let 03C31, a 2’ be the length parameters on L1, L2. Then evidently
03C31(03B1(x)), 03C32(03B23(x)) can serve as local coordinates in M. In other words, x ~ M is
determined locally by the condition (Ad x)v = Il, v E L1, Il E L2. Let 9(x) be the
angle between (Ad x)L1 and L2 at (Ad x)a(x) so 9(x) E R/2nZ, ~(x) ~ n7L.

LEMMA 6. êglbui = ki(ui), where ki is the curvature of Li.


