@article{CM_1992__83_2_161_0, author = {S{\l}lomi\'nska, Jolanta}, title = {Smith theory and quasi-periodicity in {Bredon} cohomology}, journal = {Compositio Mathematica}, pages = {161--186}, publisher = {Kluwer Academic Publishers}, volume = {83}, number = {2}, year = {1992}, zbl = {0762.55005}, language = {en}, url = {http://archive.numdam.org/item/CM_1992__83_2_161_0/} }
Słlomińska, Jolanta. Smith theory and quasi-periodicity in Bredon cohomology. Compositio Mathematica, Tome 83 (1992) no. 2, pp. 161-186. http://archive.numdam.org/item/CM_1992__83_2_161_0/
[1] Equivariant cohomology theory. Lecture Notes in Math. 34, Berlin- Heidelberg-New York: Springer 1967. | MR | Zbl
:[2] Introduction to compact transformation groups. New York -London: Academic Press, 1972. | MR | Zbl
:[3] Cohomology of groups. New York- Heidelberg-Berlin: Springer 1982. | MR | Zbl
:[4] Homological Algebra. Princeton, N.J.: Princeton University Press, 1956. | MR | Zbl
and :[5] Projectivity and relative projectivity over group rings, J. Pure and Applied Algebra 7 (1976), 287-302. | MR | Zbl
:[6] A course in homological algebra. New York- Heidelberg-Berlin: Springer, 1970. | MR | Zbl
: and :[7] The Euler class and periodicity of groups cohomology, Comment. Math. Helvetici 53 (1978), 643-650. | EuDML | MR | Zbl
:[8] Differenzierbare G-Mannigfaltgkeiten. Lecture Notes in Math. 59, Berlin- Heidelberg-New York: Springer 1968. | MR | Zbl
:[9] A generalization of Smith theory, Proc. of A.M.S. 101 (1987), 728-730. | MR | Zbl
:[10] On the equivariant homotopy of spheres, Dissertationes Mathematicace 134, PWN 1976. | MR | Zbl
:[11] Sur la dimension cohomologique des groupes profinis, Topology 3 (1965), 413-420. | MR | Zbl
:[12] Equivariant Bredon cohomology of classifying spaces of families of subgroups, Bull Ac. Pol. Math. 28 (1980), 503-508. | Zbl
:[13] Hecke structure on Bredon cohomology, to appear in Fundamenta Mathematicae. | Zbl
:[14] Finiteness conditions in Bredon cohomology, to appear in J. Pure and Applied Algebra. | Zbl
:[15] Dimension in Bredon cohomology. In preparation.
: