@article{CM_1992__83_3_347_0, author = {Borel, Armand and Prasad, Gopal}, title = {Values of isotropic quadratic forms at $S$-integral points}, journal = {Compositio Mathematica}, pages = {347--372}, publisher = {Kluwer Academic Publishers}, volume = {83}, number = {3}, year = {1992}, mrnumber = {1175945}, zbl = {0777.11008}, language = {en}, url = {http://archive.numdam.org/item/CM_1992__83_3_347_0/} }
TY - JOUR AU - Borel, Armand AU - Prasad, Gopal TI - Values of isotropic quadratic forms at $S$-integral points JO - Compositio Mathematica PY - 1992 SP - 347 EP - 372 VL - 83 IS - 3 PB - Kluwer Academic Publishers UR - http://archive.numdam.org/item/CM_1992__83_3_347_0/ LA - en ID - CM_1992__83_3_347_0 ER -
Borel, Armand; Prasad, Gopal. Values of isotropic quadratic forms at $S$-integral points. Compositio Mathematica, Volume 83 (1992) no. 3, pp. 347-372. http://archive.numdam.org/item/CM_1992__83_3_347_0/
[A] Non-square-integrable cohomology of arithmetic groups, Duke Math. J. 47 (1980), 435-449. | MR | Zbl
:[B] Linear Algebraic Groups, Benjamin, New York 1969; 2nd edn., GTM 126, Springer-Verlag 1991. | MR | Zbl
:[BP] Valeurs de formes quadratiques aux points entiers, C. R. Acad. Sci. Paris 307 (1988), 217-220. | MR | Zbl
et :[D] A simple proof of Borel's density theorem, Math. Zeitschr. 174 (1980), 81-94. | MR | Zbl
,[DM] Values of quadratic forms at primitive integral points, Inv. Math. 98 (1989), 405-425. | MR | Zbl
and :[M] Discrete groups and ergodic theory, in Number Theory, Trace Formulas and Discrete Groups, Symposium in honor of A. Selberg, Oslo 1987, Academic Press (1989), 377-398. | MR | Zbl
:[P] The problem of strong approximation and the Kneser-Tits conjecture, Math. USSR Izv. 3 (1969), 1139-1147;Addendum, ibid. 4(1970), 784-786. | Zbl
:[RR] On a diophantine inequality concerning quadratic forms, Göttingen Nachr. Mat. Phys. Klasse (1968), 251-262. | MR | Zbl
and :[Rt] Raghunathan's topological conjecture and distribution of unipotent flows Duke Math. J. 63 (1991), 235-280. | MR | Zbl
:[W] Adeles and algebraic groups, Progress in Mathematics 23, Birkhäuser, Boston, 1982. | MR | Zbl
,