@article{CM_1992__84_3_223_0, author = {Tzanakis, N. and de Weger, B. M. M.}, title = {How to explicitly solve a {Thue-Mahler} equation}, journal = {Compositio Mathematica}, pages = {223--288}, publisher = {Kluwer Academic Publishers}, volume = {84}, number = {3}, year = {1992}, mrnumber = {1189890}, zbl = {0773.11023}, language = {en}, url = {http://archive.numdam.org/item/CM_1992__84_3_223_0/} }
TY - JOUR AU - Tzanakis, N. AU - de Weger, B. M. M. TI - How to explicitly solve a Thue-Mahler equation JO - Compositio Mathematica PY - 1992 SP - 223 EP - 288 VL - 84 IS - 3 PB - Kluwer Academic Publishers UR - http://archive.numdam.org/item/CM_1992__84_3_223_0/ LA - en ID - CM_1992__84_3_223_0 ER -
Tzanakis, N.; de Weger, B. M. M. How to explicitly solve a Thue-Mahler equation. Compositio Mathematica, Volume 84 (1992) no. 3, pp. 223-288. http://archive.numdam.org/item/CM_1992__84_3_223_0/
[ACHP] Elliptic curves of conductor 11, Math. Comput. 35 (1980), 991-1002. | MR | Zbl
and ,[Be] Algebraic number-fields with two independent units, Proc. London Math. Soc. 34 (1932), 360-378. | Zbl
,[BGMMS] Constants for lower bounds for linear forms in logarithms of algebraic numbers II. The homogeneous rational case, Acta Arith. 55 (1990), 15-22. | MR | Zbl
, , , and ,[Bi1] On the units of algebraic fields of third and fourth degree (Russian), Mat. Sb. 40, 82 (1956), 123-137. | MR | Zbl
,[Bi2] A theorem on the units of algebraic fields of nth degree, (Russian), Mat. Sb. 64, 106 (1964), 145-152. | MR
,[BS] Number theory, Academic Press, New York, London, 1973. | Zbl
and ,[Bu1] The generalized Voronoi algorithm in totally real algebraic number fields, Eurocal '85, Linz 1985, Vol. 2, Lecture Notes in Comput. Sci. 204, Springer, Berlin, New York, 1985, pp. 479-486. | MR | Zbl
,[Bu2] A generalization of Voronoi's unit algorithm I, J. Number Th. 20 (1986), 177-191. | MR | Zbl
,[Bu3] A generalization of Voronoi's unit algorithm II, J. Number Th. 20 (1986), 192-209. | MR | Zbl
,[Bu4] On the computation of units and class numbers by a generalization of Lagrange's algorithm, J. Number Th. 26 (1987), 8-30. | MR | Zbl
,[Bu5] The computation of the fundamental unit of totally complex quartic orders, Math. Comput. 48 (1987), 39-54. | MR | Zbl
,[DF] The theory of irrationalities of the third degree, Vol. 10, Transl. of Math. Monographs, Am. Math. Soc, Rhode Island, 1964. | MR | Zbl
and ,[Ev] On equations in S-units and the Thue-Mahler equation, Invent. Math. 75 (1984), 561-584. | MR | Zbl
,[FP] Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comput. 44 (1985), 463-471. | MR | Zbl
and ,[Ko] p-adic numbers, p-adic analysis, and zeta-functions, Springer Verlag, New York, 1977. | MR | Zbl
,[LLL] Factoring polynomials with rational coefficients, Math. Ann. 261 (1983), 515-534. | MR | Zbl
and ,[Ma] Zur Approximation algebraischer Zahlen, I: Über den grössten Primteiler binärer Formen, Math. Ann. 107 (1933), 691-730. | JFM | MR | Zbl
,[Na1] Elementary and analytic theory of algebraic numbers, Polish Scientific Publishers, Warszawa, 1974. | MR | Zbl
,[Na2] Elementary and analytic theory of algebraic numbers, 2nd ed., Polish Scientific Publishers, Warszawa, 1990. | MR | Zbl
,[PW] Products of prime powers in binary recurrence sequences I. The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation, Math. Comput. 47 (1986), 713-727. | MR | Zbl
and ,[PZ1] On effective computation of fundamental units I, Math. Comput. 38 (1982), 275-291. | MR | Zbl
and ,[PZ2] On effective computation of fundamental units II, Math. Comput. 38 (1982), 293-329. | MR | Zbl
, and ,[PZ3] Algorithmic algebraic number theory, Cambridge University Press, Cambridge, 1989. | MR | Zbl
and ,[Sm] KANT - a tool for computations in algebraic number fields, A. Pethö, M. Pohst, H. C. Williams and H. G. Zimmer, eds., Computational Number Theory, Walter de Gruyter & Co., Berlin, 1991, pp. 321-330. | MR | Zbl
,[Sp] Classical diophantine equations in two unknowns (Russian), Nauka, Moskva, 1982. | MR | Zbl
,[ST] Exponential diophantine equations, Cambridge University Press, Cambridge, 1986. | MR | Zbl
and ,[Th] Über Annäherungswerten algebraischer Zahlen, J. reine angew. Math. 135 (1909), 284-305. | JFM
,[TW1] On the practical solution of the Thue equation, J. Number Th. 31 (1989), 99-132. | MR | Zbl
and ,[TW2] Solving a specific Thue-Mahler equation, Math. Comput. 57 (No. 196) (1991), 799-815. | MR | Zbl
and ,[TW3] On the practical solution of the Thue-Mahler equation, A. Pethö, M. Pohst, H. C. Williams and H. G. Zimmer, eds., Computational Number Theory, Walter de Gruyter & Co., Berlin, 1991, pp. 289-294. | MR | Zbl
and , "[Wa] A lower bound for linear forms in logarithms, Acta Arith. 37 (1980), 257-283. | MR | Zbl
,[dW1] Algorithms for diophantine equations, CWI-Tract No. 65, Centre for Math. and Comp. Sci., Amsterdam, 1989. | MR | Zbl
,[dW2] On the practical solution of Thue-Mahler equations, an outline, K. Györy and G. Halász, eds., Number Theory, Coll. Math. Soc. János Bolyai, Vol. 51, Budapest, 1990, pp. 1037-1050. | MR | Zbl
,[Yu1] Linear forms in p-adic logarithms, Acta Arith. 53 (1989), 107-186. | MR | Zbl
,[Yu2] Linear forms in p-adic logarithms II, Compositio Math. 74 (1990), 15-113. | Numdam | MR | Zbl
,