COMPOSITIO MATHEMATICA

ENRIC NART

Formal group laws for certain formal groups arising from modular curves

Compositio Mathematica, tome 85, nº 1 (1993), p. 109-119 <http://www.numdam.org/item?id=CM_1993_85_1_109_0>

© Foundation Compositio Mathematica, 1993, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Formal group laws for certain formal groups arising from modular curves

ENRIC NART

Dept. de Matemàtiques, Univ. Autònoma Barcelona, Edifici C, 08193 Bellaterra, Barcelona, Spain

Received 10 July 1991; accepted 11 November 1991

Let $N \ge 5$ be an odd square-free natural number. Let $\mathscr{J}_{|\mathbb{Z}}^{new}$ be the Néron model of $J_0(N)^{new}$, the new part of the jacobian of the modular curve $X_0(N)_{|\mathbb{Q}}$. In [De-Na] we proved that the formal completion of \mathscr{J}^{new} along the zero section is determined by the relative L-series of $J_0(N)^{new}$ with respect to $\mathbb{T} \otimes \mathbb{Q}$, where \mathbb{T} is the Hecke algebra. In fact, we explained how to construct a formal group law for $(\mathscr{J}^{new})^{\wedge}$ from a formal Dirichlet series made with the integral matrices reflecting the action of the Hecke operators on the Lie algebra of \mathscr{J}^{new} .

In this note we apply this result to show that a formal version of the Shimura– Taniyama–Weil conjecture implies the conjecture itself. In Section 2 we give first an effective version of the mentioned theorem of [De-Na]. We show that a formal group law for $(\mathcal{J}^{new})^{\wedge}$ can also be constructed with the integral matrices deduced from the action of the Hecke operators on the Z-module S^{new} of all cusp forms (of weight two, with respect to $\Gamma_0(N)$) with integral Fourier development at infinity and belonging to the new part. In Section 3, as an application of this computation of $(\mathcal{J}^{new})^{\wedge}$ we prove the following: if $\mathscr{E}_{|Z}$ is the Néron model of an elliptic curve $E_{|Q}$ with conductor N, then, the existence of a non-trivial homomorphism of formal groups over $Z: (\mathcal{J}^{new})^{\wedge} \rightarrow \mathscr{E}^{\wedge}$ is sufficient to imply the existence of a non-trivial homomorphism: $J_0(N)^{new} \rightarrow E$.

1. The action of Hecke

Let $N \ge 5$ be an odd square-free integer. Let $M_0(N)$ be the curve over $\text{Spec}(\mathbb{Z})$ representing the moduli stack classifying generalized elliptic curves with a cyclic subgroup of order N [Ka-Ma]. If d, D are positive integers such that $dD \mid N$, one has a finite morphism:

 $B_d: M_0(N) \to M_0(D),$

Partially supported by grant PB89-0215 from DGICYT.

defined by the rule [Ma2, §2]:

 $(E, (H_d, H_D, H_{N/dD})) \rightarrow (E/H_d, H_D).$

Let $X_0(N) \xrightarrow{i} M_0(N)$ be the minimal regular resolution of $M_0(N)$ over Spec(\mathbb{Z}). Let us denote $X = X_0(N)$, $X' = X_0(D)$. The morphisms B_d extend to finite morphisms between the minimal regular resolutions, hence, they induce homomorphisms:

$$\operatorname{Pic}_{X/\mathbb{Z}}^{0} \xleftarrow{(B_{d})_{*}} \operatorname{Pic}_{X'/\mathbb{Z}}^{0}.$$

 $(B_d)^*$ is the usual operator on invertible sheaves, whereas $(B_d)_*$ is the norm-homomorphism [Gr, 6.5]. One gets homomorphisms:

$$H^{1}(X, \mathcal{O}) \xleftarrow{(B_{d})_{\star}}{H^{1}(X', \mathcal{O})} H^{1}(X', \mathcal{O})$$

$$H^{0}(X, \Omega) \xleftarrow{(B_{d})_{\star}}{(B_{d})^{\star}} H^{0}(X', \Omega), \qquad (1.1)$$

the former by the identification of $H^1(X, \mathcal{O})$ with the tangent space of Pic⁰ at zero; the latter by Grothendieck's duality. Ω_X is the dualizing sheaf, that is, the sheaf of regular differentials, which is defined as the only non-vanishing homology group (in degree -1) of the complex $R\pi^!\mathcal{O}_{\text{Spec}(\mathbb{Z})}$, where π is the structural morphism of X.

(1.2) **PROPOSITION**. After tensoring with \mathbb{Q} , both homomorphisms $(B_d)^*$ in (1.1) are the natural ones induced by $B_d: X_{\mathbb{Q}} \to X'_{\mathbb{Q}}$.

Proof. This is a well-known general fact. The identification of $H^1(X_{\mathbb{Q}}, \mathcal{O})$ with the tangent space of Pic⁰ is realized through the exact sequence:

$$0 \longrightarrow H^{1}(X_{\mathbb{Q}}, \mathcal{O}) \xrightarrow{\exp} H^{1}(X_{\mathbb{Q}} \otimes \mathbb{Q}[\varepsilon], \mathcal{O}^{*}) \longrightarrow H^{1}(X_{\mathbb{Q}}, \mathcal{O}^{*})$$

where $\mathbb{Q}[\varepsilon]$ is the ring of dual numbers and $\exp(s) = 1 + s\varepsilon$. Easy computation with Čech cocyles shows that, at the level of $H^1(X_{\mathbb{Q}}, \mathcal{O}), (B_d)^*$ induces the natural homomorphism and $(B_d)_*$ induces the trace-homomorphism. Now the classical trace formula [Se, p. 32] shows that the Serre-dual homomorphism of $(B_d)_*$ is the natural operation on differentials.

For any prime p dividing N, the Atkin involution w_p extends to an involution of $M_0(N)$ [Ka-Ma] and by minimality to an involution of $X_0(N)$ commuting with *i*. For any prime *l* not dividing *N*, the Hecke operator T_l is, by definition, the endomorphism of $J_0(N)$ induced by the correspondence on $X_0(N)_{\mathbb{Q}}$ determined by the morphisms:

$$X_{0}(N)_{Q}$$

$$\uparrow$$

$$B$$

$$X_{0}(Nl)_{Q}$$

$$B_{l}$$

$$\downarrow$$

$$X_{0}(N)_{Q},$$

where we denote $B = B_1$. That is, T_l is the composition of the two homomorphisms:

$$T_l: J_0(N) \xrightarrow{(B_l)^*} J_0(Nl) \xrightarrow{B_*} J_0(N).$$

The Hecke algebra is by definition the subalgebra \mathbb{T} of $\operatorname{End}_{\mathbb{Q}}(J_0(N))$ generated by all T_l and w_p .

By the universal property, T_l operates on the Néron model \mathcal{J} of $J_0(N)$ and on its connected component as:

$$T_l : \mathscr{J}^0 \xrightarrow{(B_l)_{\mathbb{Z}}^*} (\mathscr{J}')^0 \xrightarrow{(B_*)_{\mathbb{Z}}} \mathscr{J}^0,$$

where \mathscr{J}' is the Néron model of $J_0(Nl)$. By a theorem of Raynaud [Ra, 8.1.4], \mathscr{J}^0 represents the functor $\operatorname{Pic}_{X_0(N)/\mathbb{Z}}^0$. Hence, at the level of Pic^0 , the homomorphisms $(B_l)^*$, B_* coincide with $(B_l)^*$, $(B_*)_{\mathbb{Z}}$, since they induce the same homomorphism on the generic fiber. Hence, T_l operates on $H^1(X, \mathcal{O})$ and on $H^0(X, \Omega)$, always by the same rule: $T_l = B_*(B_l)^*$, with the homomorphisms B_* , $(B_l)^*$ considered in (1.1).

Let $S_2(\Gamma_0(N), \mathbb{Z})$ be the lattice of cusp forms of weight 2, with respect to $\Gamma_0(N)$, with integral Fourier coefficients. The following theorem is essentially due to Mazur:

(1.3) THEOREM. Lie (\mathscr{J}) and $S_2(\Gamma_0(N), \mathbb{Z})$ are isomorphic as \mathbb{T} -modules.

Proof. Let us denote $X = X_0(N)$, $X' = X_0(Nl)$, $M = M_0(N)$, $M' = M_0(Nl)$. Consider the canonical isomorphisms:

$$\operatorname{Lie}(\mathscr{J}) \simeq T_0(\mathscr{J})^{\vee} \simeq H^1(X, \mathcal{O})^{\vee} \simeq H^0(X, \Omega),$$

with compatible (by definition) action of \mathbb{T} everywhere. We need to check the compatibility of the action of \mathbb{T} on $H^0(X, \Omega)$ with the action on $H^0(M, \Omega)$ as defined by Mazur in [Ma1]. More precisely, we need the following diagrams to commute:

$$H^{1}(X', \mathcal{O}) \xleftarrow{B^{*}} H^{1}(X, \mathcal{O})$$

$$i^{*} \qquad \qquad \uparrow i^{*} \qquad \qquad \uparrow i^{*} \qquad (1.4)$$

$$H^{1}(M', \mathcal{O}) \xleftarrow{c^{*}} H^{1}(M, \mathcal{O})$$

$$H^{0}(X', \Omega) \xleftarrow{(B_{j})^{*}} H^{0}(X, \Omega)$$

$$i_{*} \qquad \qquad \downarrow i_{*} \qquad \qquad \downarrow i_{*}$$

$$H^{0}(M', \Omega) \xleftarrow{(cw_{j})^{*}} H^{0}(M, \Omega),$$

where i_* is defined from i^* by duality and c^* , c_* are as in [Ma1, p. 88]. The same argument as in [Ma1, II, Lemma 3.3] shows that all the Z-modules involved are free; hence, the commutativity of the diagrams can be checked after tensoring with Q. Then, it is a consequence of (1.2). Taking the dual diagram of (1.4) we have a commutative diagram:

showing that the isomorphism i_* (same proof as [Ma1, II, Prop. 3.4]) is a Tisomorphism. Finally, $H^0(M, \Omega)$ is T-isomorphic to $S_2(\Gamma_0(N), \mathbb{Z})$ as shown by Mazur [Ma1, II, (4.6) and (6.2)].

2. A formal group law for $(\mathscr{J}^{\text{new}})^{\wedge}$

Under the canonical identification:

$$S_2(\Gamma_0(N)) \simeq H^0(X_0(N)_{\mathbb{C}}, \Omega^1),$$

given by $f(z) \rightarrow f(z)dz$, the homomorphisms (1.1) can be interpreted by means of

the action of certain double classes. Following the terminology of [Sh] we have:

(2.1) PROPOSITION. Let $A_d = \begin{pmatrix} d & 0 \\ 0 & 1 \end{pmatrix}$ and $A_d^i = \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix}$. The homomorphisms $(B_d)^*, (B_d)_*$ act on modular forms as:

$$(B_d)^* = [\Gamma_0(D)A_d\Gamma_0(N)]_2, \qquad (B_d)_* = [\Gamma_0(N)A_d^{\dagger}\Gamma_0(D)]_2.$$

In particular, they are adjoint with respect to Petersson scalar product. Proof. B_d induces the morphism:

$$\mathbb{H}^*/\Gamma_0(N) \simeq X_0(N)(\mathbb{C}) \to \mathbb{H}^*/\Gamma_0(D) \simeq X_0(D)(\mathbb{C}),$$

given by, $[z] \rightarrow [dz]$. Hence, $(B_d)^*(f(z)) = df(dz)$. On the other hand, $\Gamma_0(D)A_d\Gamma_0(N) = \Gamma_0(D)A_d$, since $\Gamma_0(N) \subseteq A_d^{-1}\Gamma_0(D)A_d$; hence:

$$f|_{2}[\Gamma_{0}(D)A_{d}\Gamma_{0}(N)]_{2} = f|_{2}A_{d} = df(dz).$$

The double class $\Gamma_0(N)A_d^{\dagger}\Gamma_0(D)$ determines the transpose correspondence of that determined by $\Gamma_0(D)A_d\Gamma_0(N)$ [Sh, 7.2]. Hence, it determines the homomorphism $(B_d)_*: J_0(N)_{|\mathbb{C}} \to J_0(D)_{|\mathbb{C}}$. The last assertion is consequence of [Sh, 3.4.5].

(2.2) REMARK. The operator B_d introduced by Atkin-Lehner [At-Le] corresponds in our notation to $\frac{1}{d}(B_d)^*$.

The old part $S_2(\Gamma_0(N))^{\text{old}}$ of $S_2(\Gamma_0(N))$ is, by definition, the subspace generated by all images of $(B_d)^*$ for all possible choices of d, D satisfying dD | N, D < N. The new part $S_2(\Gamma_0(N))^{\text{new}}$ is defined to be the orthogonal complement of $S_2(\Gamma_0(N))^{\text{old}}$ with respect to the Petersson scalar product. By (2.1) we have also:

$$S_2(\Gamma_0(N))^{\mathrm{new}} = \bigcap_{dD \mid N, D < N} \operatorname{Ker}(B_d)_*.$$

Since $(B_d)_*$ and $(B_d)^*$ leave $S_2(\Gamma_0(N), \mathbb{Z})$ invariant, we may define:

$$S^{\operatorname{new}} := S_2(\Gamma_0(N))^{\operatorname{new}} \cap S_2(\Gamma_0(N), \mathbb{Z}) = \bigcap_{dD \mid N, D < N} \operatorname{Ker}((B_d)_{* \mid S_2(\Gamma_0(N), \mathbb{Z})}).$$

We do not know a priori that S^{new} is a lattice in $S_2(\Gamma_0(N))^{\text{new}}$. Nevertheless, this will be clear from the proof of Theorem (2.3) below.

Finally, we define $J_0(N)^{\text{new}}$ as the quotient of $J_0(N)$ by the abelian subvariety generated by the images of all $(B_d)^*$ for all possible choices of d, D satisfying dD | N and D < N. Let g be the dimension of $J_0(N)^{\text{new}}$ and let \mathscr{J}^{new} be its Néron model.

114 E. Nart

(2.3) THEOREM. For the primes p dividing N and the primes l not dividing N, let U_p , $T_l \in M_g(\mathbb{Z})$ be the matrices of the Atkin–Lehner operators and the Hecke operators, with respect to any basis of S^{new} . Since these matrices commute, the formal Dirichlet series:

$$\sum_{n=1}^{\infty} A_n \cdot n^{-s} = \prod_p (I_g - U_p \cdot p^{-s})^{-1} \cdot \prod_l (I_g - T_l \cdot p^{-s} + I_g \cdot p^{1-2s})^{-1},$$

is well-defined and $A_n \in M_g(\mathbb{Z})$ for all n. Let L(X, Y) be the g-dimensional formal group law with logarithm:

$$F(X) = \sum_{n=1}^{\infty} \frac{1}{n} A_n X^n \in \mathbb{Q}[\![X_1, \dots, X_g]\!]^g,$$

where X^n is the notation for $(X_1^n, \ldots, X_g^n)^t$. Then, L(X, Y) is defined over \mathbb{Z} and it is isomorphic to the formal completion of \mathscr{J}^{new} along the zero section.

Proof. After [De-Na] it is sufficient to show that $\text{Lie}(\mathscr{J}^{\text{new}})$ and S^{new} are isomorphic as \mathbb{T} -modules. If N is a prime, $S^{\text{new}} = S_2(\Gamma_0(N), \mathbb{Z}), \mathscr{J}^{\text{new}} = \mathscr{J}$ and this is given by (1.3) (cf. [Na]). In general, under the \mathbb{T} -isomorphisms of (1.3), S^{new} corresponds to the sub- \mathbb{T} -module:

$$S^{\text{new}} \simeq \bigcap_{dD|N, D < N} \text{Ker}(B_d)_*$$

of Lie(\mathscr{J}). To check that Lie(\mathscr{J}^{new}) is isomorphic to this submodule is equivalent to check the dual assertion:

$$T_0(\mathscr{J}^{\mathrm{new}}) \simeq T_0(\mathscr{J})/\langle \mathrm{Im}(B_d)^* \rangle.$$

Now, the epimorphism $J_0(N) \to J_0(N)^{\text{new}}$ induces an homomorphism $T_0(\mathscr{J}) \to T_0(\mathscr{J}^{\text{new}})$, obviously compatible with \mathbb{T} and which clearly factorizes through:

$$T_0(\mathscr{J})/\langle \operatorname{Im}(B_d)^* \rangle \to T_0(\mathscr{J}^{\operatorname{new}}).$$

Since \mathscr{J} has semistable reduction and N is odd, we can apply a result of Mazur [Ma2, Corollary 1.1] to deduce that this is an isomorphism.

(2.4) REMARKS. This is an effective computation of $(\mathscr{J}^{\text{new}})^{\wedge}$ since, with the aid of a computer, it is always possible to find an explicit \mathbb{Z} -basis of S^{new} and to compute the action of the Hecke algebra.

If one defines $J_0(N)^{new}$ to be the abelian subvariety of $J_0(N)$ generated by all

Im $(B_d)^*$, then one obtains an analogous result substituting S^{new} by $S_2(\Gamma_0(N), \mathbb{Z})/\langle \text{Im}((B_d)^*_{S,(\Gamma_0(D),\mathbb{Z})}) \rangle$.

3. A formal version of the Shimura-Taniyama-Weil conjecture

The work of Cartier [Ca] and Honda [Ho] was motivated by congruence properties of modular forms and by the Shimura–Taniyama–Weil conjecture. If the coefficients of the L-series of an elliptic curve have to be the Fourier coefficients of a cusp form of weight two, they should satisfy the same type of congruences; and in fact they do: the Atkin–Swinnerton–Dyer congruences [Ha, §33].

As an application of (2.3) and the theorem of Cartier-Honda we prove now that the existence of a relation, at a formal level, between $J_0(N)$ and an elliptic curve over \mathbb{Q} with conductor N, is already sufficient to imply the existence of a morphism between the varieties.

(3.1) THEOREM. Let $E_{|\mathbb{Q}}$ be an elliptic curve with odd, square-free conductor N. Let $\mathscr{E}_{|\mathbb{Z}}$ be the Néron model of E. The following conditions are equivalent:

- (1) There exists a non-zero homomorphism, $(\mathscr{J}^{\text{new}})^{\wedge} \to \mathscr{E}^{\wedge}$, of formal groups over \mathbb{Z} .
- (2) There exists a normalized new form, $f \in S_2(\Gamma_0(N))$, such that L(f, s) = L(E, s).
- (3) There exists a non-zero homomorphism, $J_0(N)^{\text{new}} \rightarrow E$, defined over \mathbb{Q} .

Proof. It is well-known that (2) and (3) are equivalent, and $(3) \Rightarrow (1)$ is clear. Let us see that $(1) \Rightarrow (2)$.

The theorem of Cartier-Honda asserts that if a_n , $n \ge 1$, are the coefficients of the Dirichlet series L(E, s), then, the formal series:

$$G(X) = \sum_{n=1}^{\infty} \frac{1}{n} a_n X^n \in \mathbb{Q}[[X]],$$

is the logarithm of a formal group law for \mathscr{E}^{\wedge} . Let:

$$F(X) = \sum_{n=1}^{\infty} \frac{1}{n} A_n X^n \in \mathbb{Q} \llbracket X_1, \dots, X_g \rrbracket^g,$$

be the logarithm, defined in (2.3), of the formal group law isomorphic to $(\mathscr{J}^{new})^{\wedge}$.

For the standard facts on formal groups which follow we refer to [Ha]. (1) is equivalent to the existence of a matrix $M \in M_{1 \times g}(\mathbb{Z})$ such that $G^{-1}(MF(X))$ has integral coefficients. Or, equivalently to:

(1') $G^{-1}(MF(X))$ has coefficients in \mathbb{Z}_q for all primes q.

Our formal groups satisfy what Hazewinkel calls "functional equations" over \mathbb{Z}_q for all q. In our case, these functional equations are of the following type: for each prime q there exists:

$$R_q = 1 + b_1 t + \dots \in M_g(\mathbb{Q}_q)[[t]],$$

$$S_q = 1 + c_1 t + \dots \in \mathbb{Q}_q[[t]],$$

with qb_i , qc_i integral for all *i*, such that (if $b_0 = I_a$, $c_0 = 1$):

$$R_q * F(X) := \sum_{i=0}^{\infty} b_i F(X^{q_i}), \qquad S_q * G(X) := \sum_{i=0}^{\infty} c_i G(X^{q_i}),$$

have integral coefficients. By the respective Euler-product expansion of $\sum A_n n^{-s}$ and $\sum a_n n^{-s}$, we know more precisely that possible choices for R_a , S_a are:

$$R_q = \begin{cases} I_g - \frac{1}{p} U_p t, & \text{if } q = p \text{ divides } N, \\ I_g - \frac{1}{l} T_l t + \frac{1}{l} I_g t^2, & \text{if } q = l \text{ does not divide } N, \end{cases}$$
$$S_q = \begin{cases} 1 - \frac{1}{p} \varepsilon_p t, & \text{if } q = p \text{ divides } N, \\ 1 - \frac{1}{l} a_l t + \frac{1}{l} t^2, & \text{if } q = l \text{ does not divide } N, \end{cases}$$

where $\varepsilon_p = \pm 1$. By the functional equation lemma of Honda-Hazewinkel we have that (1') is equivalent to:

(1")
$$S_q M R_q^{-1} \in M_{1 \times q}(\mathbb{Z}_q) \llbracket t \rrbracket$$
, for all q .

(In fact, let i(X) = X, $F_R(X) = R_q^{-1} * i(X)$, $G_S(X) = S_q^{-1} * i(X)$. By the functional equation lemma, F and F_R (resp. G and G_S) are the logarithms of strongly isomorphic formal groups. Now, $G_S^{-1}(MF_R(X))$ has integral coefficients iff $MF_R(X)$ satisfies the functional equation S_q iff $S_q * MF_R(X) = S_q MR_q^{-1} * i(X)$ has integral coefficients.)

For the primes p dividing N, (1") asserts the existence of matrices $N_i \in M_{1 \times q}(\mathbb{Z}_p)$ such that:

$$(p-\varepsilon_p t)M = \left(\sum_{i=0}^{\infty} N_i t^i\right)(pI_g - U_p t).$$

It is easily checked that this is equivalent to:

$$N_0 = M, \quad N_1 = \frac{1}{p} (MU_p - \varepsilon_p M), \quad N_i = \frac{1}{p} N_{i-1} U_p, i \ge 2.$$

Thus, the existence of the matrices N_i amounts to:

$$MU_p^i \equiv \varepsilon_p MU_p^{i-1} \pmod{p^i}, \quad \forall i \ge 1.$$

Since U_p is invertible (by the work of Atkin-Lehner, U_p is diagonalizable with eigenvalues all equal to ± 1), this implies:

$$MU_p = \varepsilon_p M. \tag{3.2}$$

For the primes l not dividing N(1'') is equivalent to the existence of matrices $N_i \in M_{1 \times g}(\mathbb{Z}_l)$ such that:

$$(l-a_{l}t+t^{2})M = \left(\sum_{i=0}^{\infty} N_{i}t^{i}\right)(lI_{g}-T_{l}t+I_{g}t^{2}),$$

which, denoting $T = T_l$, $a = a_l$, is equivalent to:

$$\begin{cases}
N_{0} = M \\
N_{1} = \frac{1}{l} (MT - aM) \\
N_{2} = \frac{1}{l^{2}} (MT - aM)T \\
N_{i} - N_{i+1}T + lN_{i+2} = 0, \quad i \ge 1
\end{cases}$$
(3.3)

Let \mathcal{O} be the ring of integers of a finite extension of \mathbb{Q}_l , containing an eigenvalue α of T, and let $V \in M_{g \times 1}(\mathcal{O})$ be a column vector such that $TV = \alpha V$. Denote P = MT - aM and multiply (3.3) to the right by V:

$$\begin{cases} N_1 V = \frac{1}{l} PV \\ N_2 V = \frac{1}{l^2} \alpha PV \\ N_i V - \alpha N_{i+1} V + lN_{i+2} V = 0, \quad i \ge 1. \end{cases}$$

$$(3.4)$$

Let I be the prime of O dividing *l*. From (3.4) we deduce:

$$\begin{split} & \mathbb{I} \mid \alpha \Rightarrow \mathbb{I} \mid N_i V \ \forall i \ge 1 \Rightarrow \mathfrak{l}^r \mid N_i V \ \forall i \ge 1, \ \forall r \ge 1 \Rightarrow N_i V = 0 \ \forall i \ge 1 \\ & \mathbb{I} \nmid \alpha, \ \mathfrak{l}^r \mid N_i V \ \forall i \ge 1 \Rightarrow \mathfrak{l}^{r+1} \mid N_i V \ \forall i \ge 1. \end{split}$$

By recurrence (starting with r = 0), we see that $N_i V = 0$ for all $i \ge 1$, as in the former case. Since T is diagonalizable, we may vary V among a system of independent columns. We get $N_i = 0$ for all $i \ge 1$. In particular we have proved:

$$MT_l = a_l M. \tag{3.5}$$

Thus, by transposing the matrices in (3.2) and (3.5) we have seen that condition (1) of the theorem is equivalent to the existence of a matrix $L = M^t \in M_{a \times 1}(\mathbb{Z})$ such that:

$$T_l^t L = a_l L, \qquad U_p^t L = \varepsilon_p L,$$

simultaneously for all primes p, l. Let f_1, \ldots, f_g be the previously chosen basis of S^{new} and let $B \in M_g(\mathbb{C})$ be the matrix of the Petersson scalar product with respect to this basis. Since T_l and U_p are hermitian and have integral coefficients, they satisfy: $T_l = B^{-1}T_l^t B$, $U_p = B^{-1}U_p^t B$. Thus,

$$f := (f_1 \cdots f_g) B^{-1} L \in S_2(\Gamma_0(N))^{\operatorname{new}},$$

is an eigenvector of the Hecke algebra with eigenvalues a_l and ε_p respectively. If f is assumed to be normalized, this is equivalent to [Sh, 3.43]:

$$L(f, s) = \prod_{p} (1 - \varepsilon_{p} p^{-s})^{-1} \prod_{l} (1 - a_{l} p^{-s} + p^{1-2s})^{-1},$$

which is equal to L(E, s).

References

[At-Le] A. O. L. Atkin-J. Lehner: Hecke operators on $\Gamma_0(m)$, Math. Ann. 185 (1970), 134–160.

 [Ca] P. Cartier: Groupes formels, fonctions automorphes et fonctions zêta des courbes elliptiques, Actes du Congrès Int. Math. Nice 1970, Tome 2:290-299, Paris, Gauthiers-Villars, 1971.
 [De-Na] C. Deninger-E. Nart: Formal groups and L-series, Comment. Math. Helv. 65 (1990), 318-

- 333.
- [Gr] A. Grothendieck: Étude globale élémentaire de quelques classes de morphismes (EGA II), Publ. Math. IHES 8 (1961).
- [Ha] M. Hazewinkel: Formal groups and applications, New York, Academic Press, 1978.
- [Ho] T. Honda: Formal groups and zeta functions, Osaka J. Math. 5 (1968), 199-213.

- [Ka-Ma] N. M. Katz-B. Mazur: Arithmetic moduli of elliptic curves, Annals of Math. Studies n. 108, Princeton Univ. Press, Princeton, New Jersey, 1985.
- [Ma1] B. Mazur: Modular curves and the Eisenstein ideal, Publ. Math. IHES 47 (1977), 33-186.
- [Ma2] B. Mazur: Rational isogenies of prime degree, Inv. Math. 44 (1978), 129–162.
- [Na] E. Nart: The formal completion of the Néron model of $J_0(p)$, Publ. Mat. 35 (1991), 537–542.
- [Ra] M. Raynaud: Spécialisation du foncteur de Picard, Publ. Math. IHES 38 (1970), 27-76.
- [Se] J. P. Serre: Groupes algébriques et corps de classes, Hermann, Paris, 1959.
- [Sh] G. Shimura: Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press, Princeton, New Jersey, 1971.