An analogy of Tian-Todorov theorem on deformations of CR-structures
Compositio Mathematica, Tome 85 (1993) no. 1, p. 57-85
@article{CM_1993__85_1_57_0,
     author = {Akahori, Takao and Miyajima, Kimio},
     title = {An analogy of Tian-Todorov theorem on deformations of $CR$-structures},
     journal = {Compositio Mathematica},
     publisher = {Kluwer Academic Publishers},
     volume = {85},
     number = {1},
     year = {1993},
     pages = {57-85},
     zbl = {0779.53041},
     mrnumber = {1199204},
     language = {en},
     url = {http://http://www.numdam.org/item/CM_1993__85_1_57_0}
}
Akahori, Takao; Miyajima, Kimio. An analogy of Tian-Todorov theorem on deformations of $CR$-structures. Compositio Mathematica, Tome 85 (1993) no. 1, pp. 57-85. http://www.numdam.org/item/CM_1993__85_1_57_0/

[A1] Akahori, T.: Intrinsic formula for Kuranishi's ∂ϕb, RIMS, Kyoto Univ., 14 (1978), 615-641. | Zbl 0411.53029

[A2] Akahori, T.: The new estimate for the subbundles E j and its application to the deformation of the boundaries of strongly pseudo convex domains, Invent. Math. 63 (1981), 311-334. | MR 610542 | Zbl 0496.32015

[A3] Akahori, T.: The new Neumann operator associated with deformations of strongly pseudo convex domains and its application to deformation theory, Invent. Math. 68 (1982), 317-352. | MR 666165 | Zbl 0575.32021

[Ak-Mi] Akahori, T. and Miyajima, K.: Complex analytic construction of the Kuranishi family on a normal strongly pseudo convex manifold. II, RIMS, Kyoto Univ. 16 (1980), 811-834. | MR 602470 | Zbl 0464.32013

[Go-Mi] Goldman, W. and Millson, J.: The homotopy invariance of the Kuranishi space, III. J. Math., 34 (1990), 337-367. | MR 1046568 | Zbl 0707.32004

[L] Lee, J.M.: Pseudo-Einstein structures on CR manifolds, Am. J. Math. 110 (1988), 157-178. | MR 926742 | Zbl 0638.32019

[Mi1] Miyajima, K.: Completion of Akahori's construction of the versal family of strongly pseudo convex CR-structures, Trans. Amer. Math. Soc. 277 (1980), 162-172. | MR 690046 | Zbl 0525.32019

[Mi2] Miyajima, K.: On realizations of families of strongly pseudo-convex CR structures, preprint. | MR 1164193 | Zbl 0803.32010

[T] Tanaka, N.: A differential geometric study on strongly pseudo convex manifolds, Lectures in Mathematics, Dept. of Math., Kyoto Univ. | Zbl 0331.53025

[Ti] Tian, C.: Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, in (S. T. Yau ed.) Mathematical Aspects of String Theory, World Scientific (1987) pp. 629-646. | MR 915841 | Zbl 0696.53040

[To] Todorov, A.N.: The Weil-Petersson geometry of the moduli space of SU(n ≽ 3) (Calabi-Yau) Manifolds I, Commun. Math. Phy. 126 (1989). | Zbl 0688.53030