On a generalization of Tate dualities with application to Iwasawa theory
Compositio Mathematica, Tome 85 (1993) no. 2, pp. 125-161.
@article{CM_1993__85_2_125_0,
     author = {Guo, Li},
     title = {On a generalization of {Tate} dualities with application to {Iwasawa} theory},
     journal = {Compositio Mathematica},
     pages = {125--161},
     publisher = {Kluwer Academic Publishers},
     volume = {85},
     number = {2},
     year = {1993},
     mrnumber = {1204778},
     zbl = {0789.11063},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1993__85_2_125_0/}
}
TY  - JOUR
AU  - Guo, Li
TI  - On a generalization of Tate dualities with application to Iwasawa theory
JO  - Compositio Mathematica
PY  - 1993
SP  - 125
EP  - 161
VL  - 85
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1993__85_2_125_0/
LA  - en
ID  - CM_1993__85_2_125_0
ER  - 
%0 Journal Article
%A Guo, Li
%T On a generalization of Tate dualities with application to Iwasawa theory
%J Compositio Mathematica
%D 1993
%P 125-161
%V 85
%N 2
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1993__85_2_125_0/
%G en
%F CM_1993__85_2_125_0
Guo, Li. On a generalization of Tate dualities with application to Iwasawa theory. Compositio Mathematica, Tome 85 (1993) no. 2, pp. 125-161. http://archive.numdam.org/item/CM_1993__85_2_125_0/

[1] S. Bloch and K. Kato: L-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, vol. 1, Birkhäuser (1990), 333-400. | MR | Zbl

[2] K.S. Brown: Cohomology of groups, Springer-Verlag (1982). | MR | Zbl

[3] J. Cassels: Arithmetic on curves of genus 1 (IV). Proof of the Hauptvermutung, J. Reine Angew. Math. 211 (1962), 95-112. | MR | Zbl

[4] M. Flach: A generalization of the Cassels-Tate pairing, J. Reine Angew. Math. 412 (1990), 113-127. | MR | Zbl

[5] R. Greenberg: Iwasawa theory for p-adic representations, Adv. Stud. in Pure Math. 17, Academic Press (1989), 97-137. | MR | Zbl

[6] R. Greenberg: Iwasawa theory for motives, in L- functions and Arithmetic, Proceedings of the Durham Symposium, London Math. Soc. Lecture Notes Series, vol. 153 (1991), pp. 211-233. | MR | Zbl

[7] L. Guo: On a generalization of Tate dualities with application to Iwasawa theory, Thesis, University of Washington, in preparation.

[8] B. Mazur: Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183-266. | MR | Zbl

[9] W G. McCallum: On the Shafarevich-Tate group of the jacobian of a quotient of the Fermat curve, Invent. Math. 93 (1988), 637-666. | MR | Zbl

[10] J.S. Milne: Arithmetic duality theorem, Academic Press (1986). | MR | Zbl

[11] K. Rubin: On the main conjecture of Iwasawa theory for imaginary quadratic fields, Invent. Math. 93 (1988), 701-713. | MR | Zbl

[12] R. Shaw: Linear algebra and group representations, Academic Press (1983). | MR | Zbl

[13] J.H. Silverman: The arithmetic of elliptic curves, Springer-Verlag (1986). | MR | Zbl

[14] J. Tate: Duality theorems in Galois cohomology over number fields, Proc. Intern. Congress Math., Stockholm (1962), 234-241. | MR | Zbl

[15] E. Weiss: Cohomology of groups, Academic Press (1969). | MR | Zbl