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1. Introduction

The concept of dilation was introduced and investigated by several important
mathematicians [2]. Given probability measures P, Q on the o-field of Borel
subsets of a topological space S, we say that Q is a dilation of P relatively to a set
K of functions S — R, and write P <¢ Q. iff | f dP < { f dQ for all f e K. The set
of functions K is usually a cone. It is possible that, although Q does not dilate P
relatively to K, it nearly does so in some sense, giving rise to an approximate
dilation of P. A natural approach is to employ a ‘distance’ of type

5(P,Q):=inf{e>0depsffdg+eL(f),feK}

where L(f) = 0 measures the ‘size’ of f.

We allow any cone of bounded functions which is admissible, i.e., a convex
cone of continuous functions containing the constants and being invariant under the
operation v . The latter means that max{f, g} € K whenever f,geK. Initially
L(f) will be taken as the oscillation of f. Afterwards, other approximate
dilations will also be discussed. Theorem 10, summarized in Fig. 1, is our main
result.

2. Notations

In this paper A° denotes the complement of the set A; # = %(S) the o-field of
Borel subsets of a topological space S; C(S) the set of all continuous functions
S = R; Cy(S) the set of all functions in C(S) which are bounded, ‘distribution
function’ is abbreviated as df; K’ is the set of all f € K (K is a cone of functions)
with inf f = 0 and sup f = 1; .#(S) the set of all probability measures on the o-
field of Borel subsets of S; osc f stands for ‘oscillation of the function f”, ie.,
osc f:=sup f —inf f; J; represents the Dirac measure at the point s; the
symbols v, A have the usual meaning, i.c., they denote the maximum and the
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minimum operation, respectively; Isc abbreviates ‘lower semicontinuous’; and,
finally, iff stands for ‘if and only if’.

We begin with a lemma, essential for the fundamental Theorem 7. It was
suggested by Lemma 4 in [2], to which it reduces when ¢ = 0.

3. LEMMA. Let S be a compact Hausdorff space and K = C(S) an admissible
cone. Let P, Q € #(S) be such that | f dP < | f dQ +¢ osc ffor all f e K. Let us fix
bounded functions o, B, ¢;: S — R, where o and § are Borel measurable and ¢; = 0,
i=1,...,n. Further let us fix f,eK,i=1,...,n. Then

inf [a(s)+ﬂ(t)+ 5, (fi(s)—ﬁ(t»qsi(s)] >0 M
implies
chdP+fﬂdQ+soscﬂ>0. )

Proof. The proof is patterned after that of Lemma 3 in [2]. As in that
lemma, the crucial step consists of defining an auxiliary function
B :R"— R:=[— 0, + 0] having convenient properties. The Euclidean space
R" will be equipped with the usual coordinatewise partial ordering. Throughout
the rest of the proof we will use the notation f:= (f},..., f,). Also p: S — R will
be the lIsc regularization of f. It is given by B(¢) := lim,_,, B(s). Of course (1) holds
true with B in place of S.

Let xe R" and consider the sequences

(P1> P25 --)€[0,1]° withpy +p, +---=1, 3)
(t1, ty,..)ES® with x < ijf(tj). 4
J
Set

T.:= {; p;B(t)|(3) and (4) hold}
and define
Bx):=infT, fT,#@, and Px):=+ow ifT,=(.
It is easy to see that B(x) is finite on and only on the set U:= {xe R"|x < yfor

some yeconv f(S)}. Here the notation conv f(S) indicates the convex hull of
f(S). The properties of § that we are interested in are: (i) —a < fo f < B, (ii) B is
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increasing, (iii) § is convex, and (iv) f is Isc. The last one is the more important; it
is the Lemma 4 in [2], where we need the lower semicontinuity of f.

Let us prove the property (i). Taking (p,):= (1,0,...) and (t,):= (t,¢,...) €S>,
we see that f(t) e Tj,, hence B(f(t)) < B(¢), that is,

Bof<B<B ons. )

For the first inequality in (i), fix se€ S, set x:= f(s) and take sequences (p;), (t;)
verifying (3) and (4), respectively. In particular

fO <Tpif ). ©)

Let us apply (1) with t:= t;; afterwards, we multiply by p; and sum over j
obtaining

)+ b+ 3 [f.-(s) —;p,-f,-(t,-)]qsi(s) >0,

which gives, using (6), a(s) + Z; p;B(t;) > 0. This together with the definition of B
yield a(s)+ o f(s) = 0 so that, by (5),

—a<Bof<B onS. )

That § is increasing is immediate.
The convexity is easy: let p, ge[0,1] with p+g=1, x, ye R" and

YpBe)eT.  YaBt)eT,

Therefore it is readily seen that

[Z pp;B(t) + ; qq,-B(t,-)] € Tpxtgys

J
hence
Bwx+ay) <p ; piB(t)+q gjqjli(t,),
which produces
Box +qy) < p inf T, + q inf T, = pp(x) + 4B (),

so B is convex indeed.
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It is known that a convex Isc function like ﬁ restricted to U, which is a convex
set with non-empty interior, is the limit of an increasing sequence (h,) of
functions h,y:= h; v --- v h,, where, fori = 1,...,v, h; is the restriction to U of
an affine function on R”" given by h;(x):= {(4;,x) +a;, A;€ R", a;e R. Here {-,")
is the usual inner product. Since f is increasing, we can suppose that all the h;’s
are increasing, equivalently, that 4; > 0. As K contains the constants, the linear
combinations h;° f € K, thus also h,,° f € K for all ve N, because K is invariant
under the operation v, so that

j hyye fdP < f heye £ dQ + & osc(hg,° f) for all veN.

Therefore by the Monotone Convergence Theorem

JﬁofdPsfBofdQ+eEosc(h(v,of).

It is obvious that sup h,,° f < sup f f. Further lim,(inf b, f) = inf fo f by
Dini’s lemma. Thus lim osc(h,° f) < osc(f° f) < osc B. Putting all together,
one arrives at the inequality

JﬁofdstﬁOfdQ+soscﬁ. ®)
Finally, using (7) and (8), we conclude that
JadP+fﬂdQ>IadP+fﬁofdQ

;J(a+ﬁof)dP—soscﬂ>—sosc[i O

Let P, Qe #(S). We will describe the property | f dP < [ f dQ +¢ osc f, for
all f in a subset L of C,(S) also by saying that Q is an approximate dilation or an
e-dilation of P relatively to L.

The following theorem supplies an equivalent definition of ‘c-dilation’
relatively to an admissible cone K = C(S) for the case that S is a compact metric
space. It says that a necessary and sufficient condition for Q to be an e-dilation of
P relatively to K is that one can find a probability measure 1e.#(S?) that
satisfies

J (f(s) — f(O)P(s)Ads, dt) < O for all feK, peC*(S) ()]
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and whose first marginal is P and second marginal is ‘e-close’ to Q.

4. THEOREM. Let S be a compact metric space, K = C(S) an admissible cone,
€>0,and P,Qe M(S). Then [ f dP < | f dQ+e¢ osc ffor all f € K iff there exists
A€ M(S?) satisfying (9) and, in addition,

j o(s)Ads, dt) < f o dP for all ae C(S), (10)
J B®Ads,dt) < | BdQ +eosc B for all BeC(S). (11)

Proof. ‘If: Fix feK. Applying (10) with a = — f, (9) with ¢ = 1, (11) with
B = f, one finds that | f dP < [ f(s)A(ds, dt) < | f()A(ds, dt) < [ f dQ+eosc f.
‘Only if”: By Theorem 7 in [4], the existence of a measure A M(S?) satisfying
(9), (10) and (11) is equivalent to the implication (1) = (2). Thus the ‘only if* part
follows from Lemma 3. O

In the following lemma the equivalence (b)<>(c) is known. See for example

(3]

5. LEMMA. Assume S is a metric space, ¢ =0 and P, Qe .#(S). Then the
following are equivalent:

(@) [adP <[ adQ+ ¢ osc afor all oeCy(S)
(b) |P(B)—Q(B)| < ¢ for all Be %#(S);
©) IP-Q| < 2e

Proof. We will show that (a) = (b) = (c) = (a).

(a) = (b): Since the indicator function 1, of an open set A = S is Isc, it is the
pointwise limit of an increasing sequence of non-negative functions in C,(S). So
(a) implies through the Monotone Convergence Theorem that P(4) < Q(A4) + ¢
for all open sets A = S. Now (b) follows by regularity of P.

(b)=>(c): Let u:=(P+Q)/2 and consider f:=dP/du, g:= dQ, the Radon-
Nikodym derivatives. We have, using (b), |P—Q| = j |f—gldu<2e.

(c)=(a): Let u, f and g be as in the proof of (b)=>(c), aeC,(S) and
¢:= —(sup a+inf a)/2. Therefore 2|ja+c| = osc « and

j-“dp*j adQ = f (a+e)f—g)dp < fla+c| j |f —gldu
= llutcll - IP—Q]l <& osc . -
6. DEFINITIONS. In view of Theorem 4 and Lemma 5 it becomes natural to

study the five quantities ¢,(P, Q), i = 1,..., 5, defined as follows.
Let S be a topological space, K = C,(S) an admissible cone and P, Q € 4(S).
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Here the dilations will be relative to K. Let us define

E1:={e>0|jfdP<jfdQ+s osc f for allfeK},

E,:= {s = 0| there exists Q' e #(S) with P < Q' and ||Q'—Q| < 23},
E;:= {s = 0] there exists P'e .#(S) with P’ < Q and |P'—P|| < 2{—:},
E,:= {s > 0| there exists P, Q'e #(S) with P' < Q’,

[P'—P| <2¢and |Q'-Q < 23},
E;:= {a > 0] there exists P, Q' e #(S) with P’ < Q'
and [[P'— P||+ ' Q]l < zg}.

Now we define
g(P,Q):=infE;,, i=1,...,5. (12)

It is trivial to see that E, c E{, E;c E; and E, c E; c E,. Now, if Sis a
compact metric space, taking Q' as the second marginal of the measure 4, it
follows from Theorem 4 that E, < E,. To summarize, whenever S is compact
metric space E; c E; = E, < E5 < E,, thus we have proved the important

7. THEOREM. If S is a compact metric space, ¢, < €5 < &€, = &; < &3.

8. REMARKS. (i) Later on it will be seen that e5 = ¢, and that the first and last
inequalities in Theorem 7 are frequently strict.

@) If P < Q, then ¢(P,Q)=0,i=1,...,5.

(iii) We always have 0 < (P, Q)< L, i=1,...,5.

(iv) Obviously

&y(P, Q)= sup Uf dp — ff dQ]- (13)
osc f <1
fekK

(v) Theorem 4 is false for non-compact spaces. For such spaces the condition
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[fdrP< [ fdQ+eosc f for all feK is obviously necessary but no longer
sufficient for (9), (10) and (11). To see that the named condition fails to be
sufficient, consider S:= [0, 1), take P:= §,,, and Q := §, and let K consist of all
increasing convex functions on S. One can show that &,(P,Q)=1/2 and that
there is no Q'e.#(S) dilating P with ||Q'—Q| < 2e. This contradicts the
inclusion E,; < E,, thus Theorem 4. O

From (13) it follows immediately that ¢, satisfies the triangle inequality. But &;
is not symmetric. The mapping (P, Q) 6,(P,Q):=¢(P,Q)+¢(Q,P) is a
pseudo-metric on .#(S), in fact a metric when K is a determining class for .#(S)
(for instance, S a convex compact metrizable subset of a topological vector space
and K < C(S) the cone of convex functions). It is not difficult to prove that a
sequence (P,) in .#(S) converges with respect to d,, ie., 4,(P,, P) = 0 for some
P e .#(S) iff the sequence of linear functionals f | f dP, converges uniformly
on Kn{feC(S)|||f|l=1}. As a consequence, if K is a determining class for
AM(S), the 6,-topology on #(S) is finer than the weak topology.

Neither &; nor ¢, satisfy the triangle inequality as Examples 9 and 13 will
show. On the other hand it is easy to see that g,(P, R) < 2[e4(P, Q)+£4(Q, R)].

9. EXAMPLE. A case where &;(P,R) > &;(P,Q)+¢5(Q,R). Let S:=[0,1],
K <= C(S) be the cone of all convex functions, P:= 6,,,, Q:= (1/2)(0o+J,) and
R:=§,. For each feK, f(1/2) <(1/2)f(0)+(1/2)f(1), so that P < Q, hence
03(P, Q) =0. Also d5(Q, R) < ||@—R]|/2=1/2. Since P’ < R requires P’ = §,, it
follows that 6;(P, R)= 09— 0, ,2[I/2=1. O

Probably there is no easy formula for computing the value¢;,i = 1,..., 5, but
the next theorem and corollary are an important step in this direction.

10. THEOREM. Let S be a compact space, K = C(S) an admissible cone, P,
Qe #(S) and u, v = 0 constants. Then that there exist P', Q' € #(S) such that

[P"— Pl < 2u, [Q"— QI <2v, P'<¢ Q' (14)

if and only if, for allf € K withinf f = 0 and all ce R with 0 < ¢ < sup f, we have

ijchSffdQ+uc+v sup f. (15)

Proof. By the very definition of &,, (14) is equivalent to the existence of
P’ e #(S) such that

|P"— P|| < 2u, &5(P', Q) <. (16)
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By Lemma 5 and the equality ¢, = ¢,, condition (16) on P’ is equivalent to
JadP'sfadP+u osc o, for all ae C(S)
ffdP’sffdQ+v osc f, for all feK. 17)

Since C(S) and K are cones, Theorem 5 in [4] tells us that a P’ e .#(S) satisfying
(17) exists iff, for all f;e K, «;e C(S), and m, ne N, we have that

inf (_i ) f,.> >0 (18)

implies

s

(J o;dP + u osc oc,->+.Zn: <JﬁdQ+vosc]}>>0. (19)

1

1

Letting a:= T o; and f:= X f;, then ae C(S) and f € K, since the cones C(S) and
K are convex. As osc o« < X osc a; and osc f < X osc f;, it suffices to establish the
implication

aeC(S), feK, inf(a+ ) =0

=>f adP+ffdQ+u osca+vosc f=0. (20)

Introducing h:= o + f, this is equivalent to the requirement that

deP—ffdQthdP+u osc(f — h)+v osc f,
if feK, heK, heC*(S). (21)

Given feK, we want to choose he C*(S) so as to minimize the right-hand
side of (21). Put a:= inf(f —h) and c:= sup(f — h) so that osc(f — h)=c—a
and a<f—h<e¢, or f—c<h<f—a As h>=0, setting
hoi=(f—)*:=(f—-c)v0, we have f—c<hy<h<f—a Further
f—c<hy<f—a, or a<f—hy<c which shows that osc(f — hy) <
c—a=osc(f —h). Since 0 < hy=(f — ¢)* < h and osc(f — hy) < osc(f — h),
it is clear from (21) that it suffices to consider only functions of the form
h:=(f — ¢)*, where c is a constant. Observing that f — (f —¢)* = f A ¢, (21)
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is equivalent to

JfAch—jfdQSuosc(fAc)+v osc f, forall feK, ceR. (22)

Let us show that in (22) we only need
inf f<c<supf (23)

For, the choice ¢ > sup f is the same as the choice ¢ = sup f, because in both
cases f Ac=fIfc<inf fthen | f A cdP=cand | fdQ >inf f > ¢ so that
(23) is always true.

Since K contains the constants we can always take inf f = 0, in which case
osc f = sup f. Thus the proof will be complete if we show that osc(f A ¢) = c.
Indeed, by (23) inf(f A ¢) =inf f = 0 and sup(f A ¢)=0. O

Besides using only functions f € K with inf f = 0 in (15) one may also assume
without loss of generality that sup f = 1. Hence (15), thus also (14), is equivalent
to

tu+v>¢@t), forall0<t<1. (24)

Here ¢(t):=sup{[ f A tdP—{ fdQ|feK,inf f =0, sup f = 1}.
The set of relations (24) represents a family (H,),¢o,1; of closed half planes. The
intersection

A:= AP, Q, K):=< N ]H,>r\{(u, v)eR*|lu>0,v >0}

te[0,1

is a closed convex subset of R2. The pairs (4, v)e A are precisely the pairs for
which there exist P’, Q' € #(S) satisfying (14).
Considering the definitions of ¢,(P, Q) it is clear that

&5(P, Q) = inf{v|(0, v)e A4},
&3(P, Q) = inf{u|(u,0)€ A},
e4(P, Q) = inf{u|(u,u)e A},
es(P, Q) = inf{u+v|(u, v)e A}.

The geometric meaning of &, = ¢,, €3, &, and & is clear. So putting all together
we have the situation described in Fig. 1.
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S G A(P,Q,K)

N\
R

m
3
m
< 4

Fig. 1

The only thing that is not clear is how ¢ fits into the picture. In fact one has:

11. COROLLARY. &5 =¢,.

Proof. The function t+ ¢(t) in (24) is increasing. Hence &,(P, Q) = ¢(1).
Therefore, taking t = 1 in (24), all points (v, v)e A satisfy u + v = &,(P, Q). The
equality sign is attained at (0, &,(P, Q)). This proves that 5 =¢,. O

Let S be a compact metric space with a partial order, and K the cone of all
continuous increasing functions that assume their minimum at every point of
U := supp Q, the support of Q. Note that such a cone K is not only invariant
under the operation v but also under A . Letting P € #(S) be arbitrary, we have
as ¢(t) in (24)

o) = I t A 1y(s)P(ds) = tP(U°),
which leads to ¢; = ¢, = &5 = 2¢, = &5 = P(U°) (see Fig. 2).

ﬂ\
p(f) »

P(U%)

\ 4

Fig. 2
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The above expression for ¢(t) was possible because K’ (see Notations) is
filtering from the right (see [1], p. 145), i.e., given f, g€ K’, there exists he K’ with
f, g < h. In general, if S is a compact space with a partial ordering, K < C(S) an
admissible cone such that K’ is filtering from the right, and Q € .#(S) is such that
each f e K’ assumes its minimum at every point of supp Q, then (24) takes the
form

t+v> ) =t— j "Fls)ds, te[0,1], (25)

where F is the P-distribution functions of s+ sup,x f(s):= f*(s).

It is true in general that the right slope r of the lower boundary of a region
A(P, Q) at (0,¢,) is given by the formula r = —inf{te€[0,1]|¢ is constant on
[t, 1]}, where ¢ is as in (24). Now, if ¢(t) is the right-hand side in (25), then, as it is
easy to see, the formula for r specializes to

r = —inf{te[0,1]| F(t) = 1}. (26)

Similarly, it is true in general that the left slope [ of the lower boundary of
A(P,Q) at (g5,0) is obtained by the formula ! = —sup{t, €[0,1]|¢(t)/t is
constant on (0,¢,]}, which, in the situation of (25), becomes

= —sup{t, €[0,1]| F is constant on [0,¢,]}. 27

12. EXAMPLE. Let S be the interval [0,1], K = C(S) the cone of convex
increasing functions, P e .#(S) the measure with density [1/(b—a)]lj,(s)ds
where 0 <a<b<1, and Q:= 6, The corresponding df F is given by
F(s):=(s—a)/(b—a) if se[a,b]. Hence here r = —b and | = —a, which show
that the right slope of the lower boundary of 4 at (0, ¢;) can be any number in
[—1,0) and its left slope at (¢5,0) any number in (— 1, 0]. We observe also that
here &,(P, ) = l—j}) F(s)ds = (a+b)/2, so that &, can be close to 0 or 1. O

13. Measures P,, Q, realizing the boundary of A(P, Q)

As it was already observed, A(P, Q) is a closed subset of R2. This means that, for
each point (u, v) on the boundary of A(P, Q), one can attain both equality signs in
(14) by a suitable choice of P’ and Q'. Let us now give an example where P, Q'
can be explicitly described.

Let S be a compact metric space and K < C(S) an admissible cone. Suppose
K’ possesses a largest element f*. Choose Pe.#(S) and let F be the P-
distribution function of f*. Suppose there is a unique point y in S with f*(y) = 0
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and a unique point y' in S with f*(y') = 1. (Example: let S be a compact space
with a partial ordering, a least element y and a greatest element ), and let
K < C(S) be the cone of all convex increasing functions.) Choose Q = J,. A little
calculation readily shows that here ¢ in (24) is given by ¢(t) =t — j{, F(s)ds so
that (24) reads tu+v > t — [ F(s)ds for all te[0,1]. Hence we obtain that the
part of the lower boundary of A(P, ,, K) not contained in the coordinate axes is
a smooth curve (envelope) with parametric equations u(f)=1— F(z),
v(t) = tF(t) — [, F(s)ds, t€[0,1]. Here we are assuming that P has no atom.

Define P;, Q;e .#(S) by

P(E):= P[E n (f* < t)] + u(t)o,(E),

QUE):= v(t)o,(E) + (1 —u(1))5,(E).

Certainly || P,— P|| = 2u(t) and ||Q;— Q|| = 2uv(t). Moreover, given feK’,
f fdP < J f*dp = J sAF(s)+uf*(y)
[0,1]

= j sdF(s) = tF(t) — jt F(s)ds = v(t),
(0.1

0o

and

f £4Q; = v f(Y)+[1—-v®)1f () = v(®).
Thus | f dP; < [ f dQ;. This proves that P; < Q;.

14. The triangle inequality fails for &,

Let S:=[0,1], K = C(S) be the cone of decreasing convex functions and
Q:=(1/2)(6o+J,). We want to show that,

€4(01/2, 01) > €4(01/2, Q) + €4(Q, 6,). (28)

Let us first compute &,(d;,, 9,). Here (25) applies. The function s+ —s+1is
the largest element in K and its d, ,-distribution function is F = 1, ). Using
(25) we obtain the following family of half planes

t, if

t
tu+v > .
utv {1/2, if 1

Thus u + 2v=1 is the equation of the lower boundary of A(J,,,,d,). Letting
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v=u in that equation, we conclude that £,(d,,,,6,) = 1/3.
Next consider &4(6,,,, Q). Here it is easier going back to (24). We have

_ (=172, <12
o) = sup U (f A 9)ddy ), —J fdQ] - {0, t>1/2.

The equation of the important part of the lower boundary of A(d;),, Q) is
u+ 2v =0, from which, letting v = u, we obtain &4(J,,,, Q) = 0.

As to €4(Q, d,), here again (25) applies. The Q-distribution function F of
s —s+1 has values F(s)=0if s <0, F(s)=1/2if 0<s<1 and F(s)=1 if
s = 1. By (25)

t
tu+ov > t—f F(s)ds =t —3t =1t, te[0,1].
(4]

So the part of the lower boundary of A(Q,d,;) we are interested in is
given by u+v=1/2, uel[0,1/2], showing that &,(Q,d,) = 1/4. Therefore
£4(01/2, Q) +£4(Q, 6,)=1/4. Thus (28) is proved. ]

When we dealt with cones both invariant under max and min operation, the
corresponding picture, Fig. 2, was very peculiar. In particular ¢, =¢&; = 2¢, in
that situation. Let us show that this is always so whenever the cone has the
mentioned property through the following proposition.

15. PROPOSITION. Let S be a compact metric space, K = C(S) an admissible
cone which is invariant under the operation A and let P, Qe #(S). Then the
portion of the boundary of A(P, Q, K) not contained in the u-axis is a line segment
with slope— 1. In particular ¢, = ¢, = ¢ = 2¢, = &5 at (P, Q).

Proof. The lower boundary of A(P, Q, K) has slope <1 (in absolute value). But
so has the corresponding set A(P, Q, —K), where —K:= {f|— fe€K}. Since
A(P, Q, —K) is simply the reflexion {(v,u)|(u, v)e A(P, Q, K)} of A(P,Q, K), the
lower boundary of the latter is a straight line of slope —1. O

Before ending this article it is worthwhile to make the following

16. REMARK. Let S be a compact metric space, K = C(S) an admissible cone
and P, Qe .#(S). Using the definition of ¢,(P,Q), Theorems 7 and 10 and
Corollary 11, we have

e,-(P,Q)=supl:ffdP—ffdQ} i=1,235;
!

ss(P,Q)=sup|:1jf A th—lffdQ];
Lt t

1 1
84(P,Q)=S}1,tp[m‘[f/\ tdp—mjfdQ];



120 0. J. Dotto

where f runs over K’ and t over (0, 1). It follows that, endowing .#(S) with the
weak topology, the function (P, Q)—&,(P, Q),i = 1,..., 5, is Isc and convex. It is
easy to produce examples showing that those functions are not (weakly)
continuous. O
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