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1. Introduction

The concept of dilation was introduced and investigated by several important
mathematicians [2]. Given probability measures P, Q on the Q-field of Borel
subsets of a topological space S, we say that Q is a dilation of P relatively to a set
K of functions S ~ R, and write P K Q, iff 1 f dP ~ f dQ for all f E K. The set
of functions K is usually a cone. It is possible that, although Q does not dilate P
relatively to K, it nearly does so in some sense, giving rise to an approximate
dilation of P. A natural approach is to employ a ’distance’ of type

where L(f)  0 measures the ’size’ of f.
We allow any cone of bounded functions which is admissible, i.e., a convex

cone of continuous functions containing the constants and being invariant under the
operation v. The latter means that max{f, gl E K whenever f, g E K. Initially
L( f ) will be taken as the oscillation of f. Afterwards, other approximate
dilations will also be discussed. Theorem 10, summarized in Fig. 1, is our main
result.

2. Notations

In this paper Ac denotes the complement of the set A; é3 = B(S) the J-field of
Borel subsets of a topological space S; C(S) the set of all continuous functions
s - R; Cb(S) the set of all functions in C(S) which are bounded; ’distribution
function’ is abbreviated as df; K’ is the set of all f E K (K is a cone of functions)
with inf f = 0 and sup f = 1; N(S) the set of all probability measures on the 03C3-

field of Borel subsets of S; osc f stands for ’oscillation of the function f’, i.e.,
osc f:=sup f - inf f; 03B4s represents the Dirac measure at the point s; the

symbols v, A have the usual meaning, i.e., they denote the maximum and the
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minimum operation, respectively; Isc abbreviates ’lower semicontinuous’; and,
finally, iff stands for ’if and only if’.
We begin with a lemma, essential for the fundamental Theorem 7. It was

suggested by Lemma 4 in [2], to which it reduces when 8 = 0.

3. LEMMA. Let S be a compact Hausdorff space and K c C(S) an admissible
cone. Let P, Q E N(S) be such that 1 f dP  ~ f dQ + 8 oscffor all f E K. Let us fix
bounded functions a, 03B2, ~i: S ~ R, where oc and fi are Borel measurable and ~i  0,
i = 1,..., n. Further let us fix fi ~ K, i = 1,..., n. Then

implies

Proof. The proof is patterned after that of Lemma 3 in [2]. As in that
lemma, the crucial step consists of defining an auxiliary function

:Rn ~ R:= [-~, +~] having convenient properties. The Euclidean space
R" will be equipped with the usual coordinatewise partial ordering. Throughout
the rest of the proof we will use the notation f : ( fl, ... , fn). Also fi : S - R will
be the Isc regularization of 03B2. It is given by P(t) : = lim, -, 03B2(s). Of course (1) holds
true with p in place of 03B2.

Let x E R" and consider the sequences

with

with

Set

and define

and

It is easy to see that (x) is finite on and only on the set U: = {x E Rn| x  y for
some y E conv f(S)}. Here the notation conv f(S) indicates the convex hull of
f (S). The properties of e that we are interested in are: (i) -03B1   ° f  03B2, (ii) e is
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increasing, (iii) e is convex, and (iv) Pis Isc. The last one is the more important; it
is the Lemma 4 in [2], where we need the lower semicontinuity of 03B2.

Let us prove the property (i). Taking (pn):= ( l, o, ...) and (tj := (t, t, ...) E Soo,
we see that (t) ~ Tf(t), hence (f(t))  03B2(t), that is,

For the first inequality in (i), fix s E S, set x := f(s) and take sequences (pj), (tj)
verifying (3) and (4), respectively. In particular

Let us apply (1) with t := tj; afterwards, we multiply by pj and sum over j
obtaining

which gives, using (6), 03B1(s) + 03A3jpj03B2(tj)  0. This together with the definition of 
yield 03B1(s) +  ° f(s)  0 so that, by (5),

That P is increasing is immediate.
The convexity is easy: let p, q E [0, 1] with p + q = 1, x, y ~ Rn and

Therefore it is readily seen that

hence

which produces

so à is convex indeed.
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It is known that a convex Isc function like  restricted to U, which is a convex
set with non-empty interior, is the limit of an increasing sequence (h(03BD)) of
functions h(03BD): = hl v ... v h,, where, for î = 1, ... , v, hi is the restriction to U of
an affine function on R" given by hi(x):= Ai, x&#x3E; +03B1i, AiE R", ai E R. Here y,y
is the usual inner product. Since Pis increasing, we can suppose that all the ha’s
are increasing, equivalently, that Ai  0. As K contains the constants, the linear
combinations hi 0 f E K, thus also h(03BD) ° f E K for all v E N, because K is invariant
under the operation v, so that

Therefore by the Monotone Convergence Theorem

It is obvious that sup h(03BD) ° f  sup po f Further lim03BD(inf h(03BD) ° f) = inf po f by
Dini’s lemma. Thus lim osc(h(03BD) ° f)  osc(p 0 f)  osc fi. Putting all together,
one arrives at the inequality

Finally, using (7) and (8), we conclude that

Let P, Q E N(S). We will describe the property 1 f dP ~ f dQ + e osc f, for
all f in a subset L of Cb(S) also by saying that Q is an approximate dilation or an
a-dilation of P relatively to L.
The following theorem supplies an equivalent definition of ’e-dilation’

relatively to an admissible cone K c C(S) for the case that S is a compact metric
space. It says that a necessary and sufficient condition for Q to be an e-dilation of
P relatively to K is that one can find a probability measure 03BB E vH(S2) that
satisfies
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and whose first marginal is P and second marginal is ’B-close’ to Q.

4. THEOREM. Let S be a compact metric space, K c C(S) an admissible cone,
03B5  0, and P, Q E N(S). Then 1 f dP  ~ f dQ + 03B5 osc f for all f E K iff there exists
03BB ~ N(S2) satisfying (9) and, in addition,

Proof. ’If’: Fix f E K. Applying (10) with oc = - f, (9) with 0 = 1, (11) with
f3 = f, one finds that 1 f dP  ~ f(s)03BB(ds, dt)  ~ f(t)Â(ds, dt)  ~ f dQ + e osc f.

’Only if’: By Theorem 7 in [4], the existence of a measure 03BB E M(S2) satisfying
(9), (10) and (11) is equivalent to the implication (1) ~ (2). Thus the ’only if’ part
follows from Lemma 3. ~

In the following lemma the equivalence (b)  (c) is known. See for example
[3].

5. LEMMA. Assume S is a metric space, 03B5  0 and P, Q E A(S). Then the
following are equivalent:

Proof. We will show that (a) ~ (b) ~ (c) ~ (a).
(a) ~ (b): Since the indicator function 1 A of an open set A c S is lsc, it is the

pointwise limit of an increasing sequence of non-negative functions in Cb(S). So
(a) implies through the Monotone Convergence Theorem that P(A)  Q(A) + e
for all open sets A c S. Now (b) follows by regularity of P.

(b) ~ (c): Let /J:= (P + Q)/2 and consider f : dP/d/J, g : = dQ, the Radon-
Nikodym derivatives. We have, using (b), ~P - Q~ = ~|f - g|d03BC  2E.

(c) ~ (a): Let 03BC, f and g be as in the proof of (b) ~ (c), 03B1 ~ Cb(S) and
c : = - (sup a + inf a)/2. Therefore 2 il a + c = osc a and

6. DEFINITIONS. In view of Theorem 4 and Lemma 5 it becomes natural to

study the five quantities Ei (P, Q), i = 1, ... , 5, defined as follows.
Let S be a topological space, K c Cb(S) an admissible cone and P, Q ~ N(S).
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Here the dilations will be relative to K. Let us define

and

Now we define

It is trivial to see that E2 c El, E3 c El and E2 c ES c E4. Now, if S is a
compact metric space, taking Q’ as the second marginal of the measure Â, it
follows from Theorem 4 that El c E2. To summarize, whenever S is compact
metric space E3 c El = E2 c ES c E4, thus we have proved the important

7. THEOREM. If S is a compact metric space, 03B54  03B55  82 = 03B51  03B53.

8. REMARKS. (i) Later on it will be seen that e5 = el and that the first and last
inequalities in Theorem 7 are frequently strict.

(ii) If P - Q, then 8,(P, Q) = 0, i = 1,..., 5.

(iii) We always have 0  8,(P, Q)  1, i = 1,..., 5.

(iv) Obviously

(v) Theorem 4 is false for non-compact spaces. For such spaces the condition
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~ f dP  ~ f dQ + 03B5 osc f for all f ~ K is obviously necessary but no longer
sufficient for (9), (10) and (11). To see that the named condition fails to be
sufficient, consider S:= [0, 1), take P := bl/2 and Q : 03B40 and let K consist of all
increasing convex functions on S. One can show that e,(P, Q) = 1/2 and that
there is no Q’ E J/(S) dilating P with ~Q’ - Q ~  203B5. This contradicts the

inclusion Ei c E2, thus Theorem 4. D

From (13) it follows immediately that 03B51 satisfies the triangle inequality. But 81
is not symmetric. The mapping (P, Q) ~ 03B41(P, Q):= 03B51(P, Q):=03B51(Q,P) is a

pseudo-metric on N(S), in fact a metric when K is a determining class for N(S)
(for instance, S a convex compact metrizable subset of a topological vector space
and K c C(S) the cone of convex functions). It is not difficult to prove that a
sequence (PJ in N(S) converges with respect to 03B41, i.e., 03B41(Pn, P) - 0 for some
P E J/(S) iff the sequence of linear functionals f ~ ~ f dPn converges uniformly
on K ~ {f ~ C(S)| 111 f = 1}. As a consequence, if K is a determining class for
N(S), the ô,-topology on N(S) is finer than the weak topology.

Neither B3 nor 94 satisfy the triangle inequality as Examples 9 and 13 will
show. On the other hand it is easy to see that B4(P, R)  2[03B54(P, Q)+B4(Q, R)].

9. EXAMPLE. A case where 93(P, R) &#x3E; 83(p, Q) + 93(Q, R). Let S := [0, 1],
K c C(S) be the cone of all convex functions, P := bl/2, Q := (1/2)(bo+bl) and
R:= ôo. For each f E K, f(1/2)  (1/2) f(0) + (1/2) f(1), so that P  Q, hence
b3(P, Q) = 0. Also Ô3(Q, R)  Il Q - R 11/2 = 1/2. Since P’  R requires P’ = ôo, it
follows that 03B43(P,R)=~03B40 - 03B41/2~/2 =1. ~

Probably there is no easy formula for computing the value 03B5i, i = 1, ... , 5, but
the next theorem and corollary are an important step in this direction.

10. THEOREM. Let S be a compact space, K c C(S) an admissible cone, P,
Q E N(S) and u, v a 0 constants. Then that there exist P’, Q’ E N(S) such that

if and only if, for all f E K with inf f = 0 and all c ~ R with 0  c  sup f, we have

Proof. By the very definition of 82’ (14) is equivalent to the existence of
P’ ~ N(S) such that
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By Lemma 5 and the equality 82 = e,, condition (16) on P’ is equivalent to

Since C(S) and K are cones, Theorem 5 in [4] tells us that a P’ E N(S) satisfying
(17) exists iff, for all fj ~ K, rxi E C(S), and m, n ~ N, we have that

implies

Letting a:= 1 ai and f : E fj, then a E C(S) and f E K, since the cones C(S) and
K are convex. As osc a  E osc ai and osc f  L osc fj, it suffices to establish the
implication

Introducing h : = a + f, this is equivalent to the requirement that

Given f ~ K, we want to choose h ~ C+(S) so as to minimize the right-hand
side of (21). Put a := inf(f - h) and c := sup( f - h) so that osc( f - h) = c - a
and 03B1  f - h  c, or f - c  h  f - a. As h  0, setting
h0:= ( f - c)+ := ( f - c) v 0, we have f - c  h0  h  f - 03B1. Further

f - c  h0  f - a, or 03B1  f - h0  c, which shows that osc( f - ho) 
c - 03B1 = osc( f - h). Since 0  ho = ( f - c)+  h and osc( f - h0)  osc( f - h),
it is clear from (21) that it suffices to consider only functions of the form
h:= ( f - c)+, where c is a constant. Observing that f - ( f - c)+ = f ~ c, (21)
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is equivalent to

Let us show that in (22) we only need

For, the choice c &#x3E; sup f is the same as the choice c = sup f, because in both
cases f ~ c = f If c  inf f, then f f A c dP = c and 1 f dQ  inf f  c so that
(23) is always true.

Since K contains the constants we can always take inf f = 0, in which case
osc f = sup f Thus the proof will be complete if we show that osc( f A c) = c.
Indeed, by (23) inf( f A c) = inf f = 0 and sup( f ~ c) = 0. D

Besides using only functions f ~ K with inf f = 0 in (15) one may also assume
without loss of generality that sup f = 1. Hence (15), thus also (14), is equivalent
to

Here 0(t):= sup{~ f A t dP - 1 f dQ |f E K, inf f = 0, sup f = 1}.
The set of relations (24) represents a family (Ht)t~[0,1] of closed half planes. The

intersection

is a closed convex subset of R2. The pairs (u, 03BD) ~ A are precisely the pairs for
which there exist P’, Q’ E N(S) satisfying (14).

Considering the definitions of Gi(P, Q) it is clear that

The geometric meaning of 81 =’62, 93, 84 and 8s is clear. So putting all together
we have the situation described in Fig. 1.
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The only thing that is not clear is how e, fits into the picture. In fact one has:

11. COROLLARY, ss = 03B52.
Proof. The function t ~ ~(t) in (24) is increasing. Hence 92(P, Q) = q5(l)-

Therefore, taking t = 1 in (24), all points (u, v) E A satisfy u + 03BD  e2(P’ Q). The
equality sign is attained at (0, e2(P’ Q)). This proves that es = e2. D

Let S be a compact metric space with a partial order, and K the cone of all
continuous increasing functions that assume their minimum at every point of
U := supp Q, the support of Q. Note that such a cone K is not only invariant
under the operation v but also under A. Letting P E Jt(S) be arbitrary, we have
as 0(t) in (24)

which leads to e, = 82 = 93 = 284 = 03B55 = P(U’) (see Fig. 2).

Fig. 2
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The above expression for ~(t) was possible because K’ (see Notations) is
filtering from the right (see [1], p. 145), i.e., given f, g E K’, there exists h E K’ with
f, g  h. In general, if S is a compact space with a partial ordering, K c C(S) an
admissible cone such that K’ is filtering from the right, and Q E N(S) is such that
each f E K’ assumes its minimum at every point of supp Q, then (24) takes the
form

where F is the P-distribution functions of s H sUPfeK’ f(s) := f *(s).
It is true in general that the right slope r of the lower boundary of a region

A(P, Q) at (0, e,) is given by the formula r = -inf{t ~ [0,1] | ~ is constant on
[t, 1]}, where 0 is as in (24). Now, if 0(t) is the right-hand side in (25), then, as it is
easy to see, the formula for r specializes to

Similarly, it is true in general that the left slope 1 of the lower boundary of
A(P, Q) at (83,0) is obtained by the formula 1 = - sup{t1 E [0, 1 ] |~(t)/t is

constant on (0,t1]}, which, in the situation of (25), becomes

1 = -sup{t1 E [0,1]| F is constant on [0, t1]}. (27)

12. EXAMPLE. Let S be the interval [0,1], K c C(S) the cone of convex
increasing functions, P ~ N(S) the measure with density [1/(b-03B1)]1[a,b](S) ds
where 0  a  b  1, and Q:= bo. The corresponding df F is given by
F(s) := (s - 03B1)/(b - 03B1) if s ~ [a, b]. Hence here r = - b and 1 = - a, which show
that the right slope of the lower boundary of A at (0, 03B51) can be any number in
[- 1, 0) and its left slope at (03B53,0) any number in ( -1, 0]. We observe also that
here 81(P, ôo) = 1- SA F(s) ds = (a + b)/2, so that 81 can be close to 0 or 1. D

13. Measures Pt, Q’ realizing the boundary of A(P, Q)

As it was already observed, A(P, Q) is a closed subset of R2. This means that, for
each point (u, v) on the boundary of A(P, Q), one can attain both equality signs in
(14) by a suitable choice of P’ and Q’. Let us now give an example where P’, Q’
can be explicitly described.

Let S be a compact metric space and K c C(S) an admissible cone. Suppose
K’ possesses a largest element f *. Choose P ~ N(S) and let F be the P-

distribution function of f *. Suppose there is a unique point y in S with f *(y) = 0
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and a unique point y’ in S with f *(y’) = 1. (Example: let S be a compact space
with a partial ordering, a least element y and a greatest element y’, and let
K c C(S) be the cone of all convex increasing functions.) Choose Q ôy* A little
calculation readily shows that here 4J in (24) is given by 4J(t) = t - 0 F(s) ds so
that (24) reads tu + 03BD  t - l’ 0 F(s) ds for all t ~ [0,1]. Hence we obtain that the
part of the lower boundary of A(P, 03B4y, K) not contained in the coordinate axes is
a smooth curve (envelope) with parametric equations u(t) = 1- F(t),
v(t) = tF(t) - ~t0 F(s) ds, t E [0, 1]. Here we are assuming that P has no atom.

Define Pr, Q’t ~ N(S) by

Certainly ~P’t - P ~ = 2u(t) and 11 Q; - Q ~ = 2v(t). Moreover, given f E K’,

and

Thus f f dP’t  ~ f d6; This proves that P ; - Q;.

14. The triangle inequality fails for E4

Let S := [0, 1], K c C(S) be the cone of decreasing convex functions and

Q := (1/2)(03B40+03B41). We want to show that,

Let us first compute 84(bl/2, Ô 1). Here (25) applies. The function s ~ -s + 1 is
the largest element in K and its bl/2-distribution function is F = 1[1/2,~). Using
(25) we obtain the following family of half planes

Thus u + 203BD = 1 is the equation of the lower boundary of A(03B41/2, 03B41). Letting
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v = u in that equation, we conclude that 03B54(03B41/2, 03B41) = 1/3.
Next consider 03B54(03B41/2, Q). Here it is easier going back to (24). We have

The equation of the important part of the lower boundary of A(l51/2, Q) is
u + 2v = 0, from which, letting v = u, we obtain 03B54(03B41/2, Q) = 0.
As to 03B54(Q, 03B41), here again (25) applies. The Q-distribution function F of

s H - s + 1 has values F(s) = 0 if s  0, F(s) = 1/2 if 0  s  1 and F(s) = 1 if

S b 1. By (25)

So the part of the lower boundary of A(Q, bl) we are interested in is

given by u + v = 1/2, u ~ [0,1/2], showing that 84(Q, bl) = 1/4. Therefore

84(bl/2, Q) + 03B54(Q, 03B41) = 1/4. Thus (28) is proved. D

When we dealt with cones both invariant under max and min operation, the
corresponding picture, Fig. 2, was very peculiar. In particular E2 = 83 = 2g4 in
that situation. Let us show that this is always so whenever the cone has the
mentioned property through the following proposition.

15. PROPOSITION. Let S be a compact metric space, K c C(S) an admissible
cone which is invariant under the operation A and let P, Q E A(S). Then the
portion of the boundary of A(P, Q, K) not contained in the u-axis is a line segment
with slope -1. I n particular 91 = 82 = 83 = 284 = 8s at (P, Q).

Proof. The lower boundary of A(P, Q, K) has slope  1 (in absolute value). But
so has the corresponding set A(P, Q, - K), where - K := {f| - f ~ K}. Since
A(P, Q, - K) is simply the reflexion 1(v, u) | (u, v) E A(P, Q, K)} of A(P, Q, K), the
lower boundary of the latter is a straight line of slope - 1. D

Before ending this article it is worthwhile to make the following

16. REMARK. Let S be a compact metric space, K c C(S) an admissible cone
and P, Q E N(S). Using the definition of 81(P, Q), Theorems 7 and 10 and
Corollary 11, we have
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where f ’ runs over K’ and t over (0, 1). It follows that, endowing W(S) with the
weak topology, the function (P, Q) H e, (P, Q), i = 1,..., 5, is Isc and convex. It is
easy to produce examples showing that those functions are not (weakly)
continuous. D
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