@article{CM_1993__86_1_1_0, author = {Gabber, Ofer}, title = {An injectivity property for \'etale cohomology}, journal = {Compositio Mathematica}, pages = {1--14}, publisher = {Kluwer Academic Publishers}, volume = {86}, number = {1}, year = {1993}, mrnumber = {1214652}, zbl = {0828.14011}, language = {en}, url = {http://archive.numdam.org/item/CM_1993__86_1_1_0/} }
Gabber, Ofer. An injectivity property for étale cohomology. Compositio Mathematica, Tome 86 (1993) no. 1, pp. 1-14. http://archive.numdam.org/item/CM_1993__86_1_1_0/
[1] Théorie des Topos et Cohomologie Étale des Schémas, Lecture Notes in Math. 269, 270, 305, Springer-Verlag (1972-73). | MR
, , and :[2] Grothendieck Topologies. Harvard University (1962). | Zbl
:[3] p-adic Étale Cohomology, Publ. Math. IHES 63 (1986), 107-152. | Numdam | MR | Zbl
and :[4] Some Theorems on Azumaya Algebras. In: Lecture Notes in Math. 844, Springer Verlag (1981). | MR | Zbl
:[5] Eléments de Géométrie Algébrique III (première partie), Publ. Math. IHES 11 (1961); EGA IV, Publ. Math. IHES 20, 24, 28, 32 (1964- 67). | Numdam
:[6] Le Groupe de Brauer III. In: Dix Exposés sur la Cohomologie des Schémas. North Holland Pub. Co. (1968). | Zbl
:[7] Residues and Duality, Lecture Notes in Math. 20, Springer-Verlag (1966). | MR | Zbl
:[8] A Cohomological Interpretation of Brauer Groups of Rings, Pacific Journal of Math. 86 (1980) 89-92. | MR | Zbl
:[9] Swan conductors for characters of degree one in the imperfect residue field case, Contemporary Math. Vol. 83 (1989), 101-131. | MR | Zbl
,