An injectivity property for étale cohomology
Compositio Mathematica, Tome 86 (1993) no. 1, pp. 1-14.
@article{CM_1993__86_1_1_0,
     author = {Gabber, Ofer},
     title = {An injectivity property for \'etale cohomology},
     journal = {Compositio Mathematica},
     pages = {1--14},
     publisher = {Kluwer Academic Publishers},
     volume = {86},
     number = {1},
     year = {1993},
     mrnumber = {1214652},
     zbl = {0828.14011},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1993__86_1_1_0/}
}
TY  - JOUR
AU  - Gabber, Ofer
TI  - An injectivity property for étale cohomology
JO  - Compositio Mathematica
PY  - 1993
SP  - 1
EP  - 14
VL  - 86
IS  - 1
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1993__86_1_1_0/
LA  - en
ID  - CM_1993__86_1_1_0
ER  - 
%0 Journal Article
%A Gabber, Ofer
%T An injectivity property for étale cohomology
%J Compositio Mathematica
%D 1993
%P 1-14
%V 86
%N 1
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1993__86_1_1_0/
%G en
%F CM_1993__86_1_1_0
Gabber, Ofer. An injectivity property for étale cohomology. Compositio Mathematica, Tome 86 (1993) no. 1, pp. 1-14. http://archive.numdam.org/item/CM_1993__86_1_1_0/

[1] M. Artin, A. Grothendieck, and J.L. Verdier: Théorie des Topos et Cohomologie Étale des Schémas, Lecture Notes in Math. 269, 270, 305, Springer-Verlag (1972-73). | MR

[2] M. Artin: Grothendieck Topologies. Harvard University (1962). | Zbl

[3] S. Bloch and K. Kato: p-adic Étale Cohomology, Publ. Math. IHES 63 (1986), 107-152. | Numdam | MR | Zbl

[4] O. Gabber: Some Theorems on Azumaya Algebras. In: Lecture Notes in Math. 844, Springer Verlag (1981). | MR | Zbl

[5] A. Grothendieck: Eléments de Géométrie Algébrique III (première partie), Publ. Math. IHES 11 (1961); EGA IV, Publ. Math. IHES 20, 24, 28, 32 (1964- 67). | Numdam

[6] A. Grothendieck: Le Groupe de Brauer III. In: Dix Exposés sur la Cohomologie des Schémas. North Holland Pub. Co. (1968). | Zbl

[7] R. Hartshome: Residues and Duality, Lecture Notes in Math. 20, Springer-Verlag (1966). | MR | Zbl

[8] R. Hoobler: A Cohomological Interpretation of Brauer Groups of Rings, Pacific Journal of Math. 86 (1980) 89-92. | MR | Zbl

[9] K. Kato, Swan conductors for characters of degree one in the imperfect residue field case, Contemporary Math. Vol. 83 (1989), 101-131. | MR | Zbl