@article{CM_1993__86_2_189_0, author = {Hecht, Henryk and Taylor, Joseph L.}, title = {A comparison theorem for $\mathfrak {n}$-homology}, journal = {Compositio Mathematica}, pages = {189--207}, publisher = {Kluwer Academic Publishers}, volume = {86}, number = {2}, year = {1993}, mrnumber = {1214457}, zbl = {0784.22006}, language = {en}, url = {http://archive.numdam.org/item/CM_1993__86_2_189_0/} }
TY - JOUR AU - Hecht, Henryk AU - Taylor, Joseph L. TI - A comparison theorem for $\mathfrak {n}$-homology JO - Compositio Mathematica PY - 1993 SP - 189 EP - 207 VL - 86 IS - 2 PB - Kluwer Academic Publishers UR - http://archive.numdam.org/item/CM_1993__86_2_189_0/ LA - en ID - CM_1993__86_2_189_0 ER -
Hecht, Henryk; Taylor, Joseph L. A comparison theorem for $\mathfrak {n}$-homology. Compositio Mathematica, Tome 86 (1993) no. 2, pp. 189-207. http://archive.numdam.org/item/CM_1993__86_2_189_0/
1 Localization de g-modules, C.R. Acad. Sci. Paris 292 (1981), 15-18. | MR | Zbl
and ,2 A generalization of Casselman's submodule theorem, Representation Theory of Reductive Groups, Progress in Mathematics, vol. 40, Birkhäuser, Boston, 1983. | Zbl
and ,3 Algebraic D-modules, Perspectives in Mathematics, vol. 2, Birkhäuser, Boston, 1987. | Zbl
et al.,4 Jaquet modules for real semisimple Lie groups, Proceedings of the International Congress of Mathematicians, Helsinki, 1978, pp. 557-563. | MR | Zbl
,5 Canonical extensions of Harish-Chandra modules to representations of G, Can. J. Math., vol. 41, (1989), 385-438. | MR | Zbl
,6 Asymptotic behavior of matrix coefficients of admissible representations, Duke Math. J. 49 (1982), 869-930. | MR | Zbl
and ,7 The n-cohomology of representations with an infinitesimal character, Compositio Math. 31 (1975), 219-227. | Numdam | MR | Zbl
and ,8 Équations Differentielles á Points Singuliers Réguliers, Lecture Notes in Mathematics 163, Springer Verlag, Berlin, 1973. | MR | Zbl
,9 Cohomological dimension of localization functor, Proc. Amer. Math. Soc., vol. 108, (1990), 249-254. | MR | Zbl
and ,10 Localization and standard modules for real semisimple Lie groups I: The duality theorem, Inventiones Math. 90 (1987), 297-332. | EuDML | MR | Zbl
, , , and ,11 Characters, asymptotics and n-homology of Harish-Chandra modules, Acta Math. 151 (1983), 49-151. | MR | Zbl
and ,12 On asymptotics and n-homology of Harish-Chandra modules, Journal für die reine und angewandte Mathematik 343 (1983), 169-173. | EuDML | MR | Zbl
and ,13 Analytic localization of group representations, Advances in Mathematics 79 (1990), 139-212. | MR | Zbl
and ,14 The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), 332-357. | MR | Zbl
,15 Closure Relations for Orbits on Affine Symmetric Spaces under the Action of Minimal Parabolic Subgroups, Advanced Studies in Pure Mathematics, vol. 14, 1988 pp. 541-559. | MR | Zbl
,16 Closure relations for orbits on affine symmetric spaces under the action of parabolic subgroups. Intersections of associated orbits, Hirosh. Math. Journal 18 (1988), 59-67. | MR | Zbl
,17 Asymptotic behavior of matrix coefficients of the discrete series, Duke Math. J. 44 (1977), 59-88. | Zbl
,18 Localization and Representation Theory of Reductive Lie Groups (mimeographed notes).
,19 Boundary value problems for group invariant differential equations, Elie Cartan et les mathématiques d'ajourd'hui, Astérique, 1983. | Numdam | Zbl
,20 Globalization of Harish-Chandra modules, Bull. Amer. Math. Soc. 17 (1987), 117-120. | MR | Zbl
and ,21 Géométrie algébraique et géométrie analytique, Ann. Inst. Fourier 6 (1956), 1-42. | EuDML | Numdam | MR | Zbl
,22 Irreducible characters of semisimple Lie groups III: proof of the Kazhdan-Lusztig conjectures in the integral case, Inventiones Math. 71 (1983), 381-417. | EuDML | MR | Zbl
,23 Asymptotic expansion of generalized matrix entries of representations of real reductive groups, Lie group representations I, (Proceedings, University of Maryland 1982-1983), Lecture Notes in Mathematics 1024, Springer Verlag, New York, 1983. | MR | Zbl
,