
COMPOSITIO MATHEMATICA

MARCEL BÖKSTEDT

AMNON NEEMAN
Homotopy limits in triangulated categories
Compositio Mathematica, tome 86, no 2 (1993), p. 209-234
<http://www.numdam.org/item?id=CM_1993__86_2_209_0>

© Foundation Compositio Mathematica, 1993, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1993__86_2_209_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


209

Homotopy limits in triangulated categories

MARCEL BÖKSTEDT2 and AMNON NEEMAN1,2,3
1 Department of Mathematics, University of Virginia, Charlottesville, VA 22903, USA
2Fakultâtfür Mathematik, Universitât Bielefeld, D-4800 Bielefeld, Germany

Received 12 June 1990; revised version accepted 31 March 1992

Compositio Mathematica 86: 209-234, 1993.
(Ç) 1993 Kluwer Academic Publishers. Printed in the Netherlands.

0. Introduction

Topologists and algebraists have been independently studying the homotopy
category for a long time. To a large extent the theories they have developed are
parallel. But the topologists have had a number of insights which have eluded
the algebraists, and what we have tried to do in this paper is to expose these
insights, giving some algebraic applications.
Most basic is the notion of homotopy limits and colimits. The topologists

make frequent and systematic use of the mapping telescope, and perhaps the key
point of this article is that this construction can be done in any triangulated
category. Let 0 ~ X0 ~ X1 ~ X2 ~ ··· be a sequence of objects and morphisms
in a triangulated category. We define the homotopy colimit hocolim (Xi) as the
third edge of the triangle

and we will attempt to systematically show that this is a natural and useful
construction. We give two major applications.

THEOREM 2.14 Let A be an abelian category satisfying AB4 and AB4*, with
enough projectives and injectives. Then there exist functors

and

3 This research was partly supported by the Humboldt Stiftung.
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which satisfy all reasonable good properties. D

In short, the tensor product and RHom functors extend to the unbounded
derived category under very weak hypotheses. This result was first obtained by
Spaltenstein [S], and the point here is that our proof is shorter and simpler.

The second application is

COROLLARY 5.5. Let X be a separated quasi-compact scheme. Let D(qclx) be
the derived category of chain complexes of quasi-coherent sheaves over X, and let

Dqc(X) be the derived category of chain complexes of arbitrary modules over X,
with quasi-coherent cohomology. Then the natural map

is an equivalence of categories. D

Once again, Corollary 5.5 is not startlingly new. If X is Noetherian, this may be
deduced from the study of indecomposable injectives on X. For D+, the result
was known to Verdier, using the adjoint of the inclusion of quasi-coherents in all
modules. The main point is again that the proof is so trivial.

Sections 1 and 2 develop the basic properties of homotopy colimits of
sequences, and Theorem 2.14 falls out as an immediate corollary. Sections 3 and
4 are the conjectural sections: there we discuss totalizations of complexes and
arbitrary colimits, both subjects which are poorly understood. As an illustration
of the importance of the questions, we prove in Section 3 that the category Db(R)
is closed under splitting idempotents.

But somehow the most interesting part of the paper is Section 4, where we
discuss the notion of Bousfield localization, and show that everything we did in
Section 2 should really be viewed as a special case. We also introduce Ravenel’s
notion of smashing subcategory, illustrating it with the examples from Section 2.

Section 5 is devoted to the proof of Corollary 5.5. In Section 6 we briefly
discuss other examples of localization and smashing subcategories. Perhaps
most remarkable is the fact that Grothendieck’s local cohomology functor is
nothing other than a Bousfield localization.
When we wrote this article we were not aware of Spaltenstein’s work. We

thought that we had been very clever to find such a simple proof that standard
operations can be lifted to the unbounded derived category. After the article was
already completely typed up, it was pointed out to us that our results were
obtained by Spaltenstein five years ago. Needless to say, we were deflated to
discover that Spaltenstein is every bit as clever as us, and faster. With some
reluctance, we agreed to publish our results anyway. Spaltenstein’s proof of
Theorem 2.14 is essentially identical with ours, with one minute difference:
whereas we study homotopy colimits in the derived category, Spaltenstein
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studies colimits of fibrations of actual complexes - he works in a model category.
The reader is encouraged to read Spaltenstein’s work, to see what trouble can be
caused by working with the wrong notion of limits. Of course, we had an
advantage over Spaltenstein there, in that our work is based on the approach of
the topologists.

1. Direct sums in triangulated categories

LEMMA 1.1. Let A be an abelian category satisfying AB3 (there exist arbitrary
direct sums). Then the category K(A) of chain complexes over and chain homotopy
equivalence classes of maps also has direct sums, and direct sums of triangles are
triangles.

Proof. It is trivial to show that the direct sum of chain complexes is a

categorical direct sum in K(A). p

DEFINITION 1.2. A triangulated category is said to have direct sums if it has
categorical direct sums, and direct sums of triangles are triangles.
DEFINITION 1.3. Let i7 be a triangulated category with arbitrary direct
sums. Then a full triangulated subcategory L~S is called localizing if

Every direct summand of an object in L is in L. (1.3.1)

Every direct sum of objects of L is in L. (1.3.2)

REMARK 1.4. We will see later that (1.3.1) is superfluous; (1.3.2) =&#x3E; (1.3.1). By
Rickard’s criterion for épaisse subcategories, ([Ri], proposition 1.4) L is épaisse
and one may form the quotient category f/ 1 L’ where the objects of L are
identified with 0.

LEMMA 1.5. If L is a localizing subcategory of the triangulated category, then
the triangulated category f/ 1 L has direct sums. In fact, the functor S~S/L
preserves direct sums.

Proof. Let {Xi, i E 11 be a family of objects of f/. Then in S we have for each i
morphisms Xi ~ ~i~I Xi and we need to show

(1) Any collection of maps Xi ~ Y in S/L can be lifted to a map in f/IL
~i~I Xi~Y.

(2) Given a map ~i~I Xi ~ Y in S/L such that all the composites
Xi ~ ~i~I X 4 Y are zero, then f is zero.

Proof of (1). A map Xi ~ Y in f/IL is a diagram in S
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where oc is a quasi-isomorphism, i.e. in the triangle X’i ~ Xi ~ Zi ~ 03A3X’i, Zi E L.
Thus we get a diagram

Because direct sums of triangles are triangles, ~X’i ~~Xi~
~Zi~ 03A3(~X’i) is a triangle. Because L is localizing, ~Zi~L, and so the map
EDoci: ~X’i ~ Q X is a quasi-isomorphism. ~

Proof of (2). Given a map ~iXi~ Y in S/L, it corresponds to a diagram

where 03B2 is a quasi-isomorphism. If the composite Xi ~ ~Xi ~ Y is zero in S/L,
then in i7 we have a diagram

which corresponds to the zero morphism in S/L. This means that the composite
Xi ~ ~Xi ~ Y’ must factor as Xi ~ Zi ~ Y’ with Zi~L. Thus f factorizes as

But because L is localizing, ~iZi~L and f = 0. 0

EXAMPLE 1.6. Let L c K(A) be the subcategory of homologically trivial
complexes of objects in the abelian category A. If A satisfies AB4 (i.e. direct
sums of exact sequences are exact) then L is localizing.
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COROLLARY 1.7 If A satisfies AB4 thenD(A)=K(A)/L has direct sums. ~

Needless to say, all the lemmas so far are self-dual; so if dis an abelian category
satisfying AB4*, then D(A) has direct products (i.e. categorical direct products
exist, and products of triangles are triangles). In the cases we will consider in the
rest of this article, A will be the category of modules over a ring R, which
satisfies both AB4 and AB4*.

2. Countable direct limits

Let 9’ be a triangulated category with direct sums. Suppose {Xi, i~N} is a

sequence of objects in S, together with maps Xi ~ Xi+1. We wish to define the
homotopy colimit of the sequence.

DEFINITION 2.1. The homotopy colimit of the sequence above is the third
edge of the triangle

where the map (shift) above is the shift map, whose coordinates are the natural
maps Xi ~ Xi+1.

REMARK 2.2. This is nothing more than the usual "mapping telescope"
construction of topology. If S = D(A), and d is an abelian category satisfying
AB5 (filtered direct limits of exact sequences are exact), the reader will easily
prove:

If we choose actual chain maps of chain complexes Xi ~ Xj (not merely
homotopy equivalence classes of such maps), then one can prove easily:

REMARK 2.3. Of course, the dual is also true. However, the dual of (2.2.2) is
not so useful. In our applications A will be something like the category of
modules over a ring R, and this does not satisfy AB5*. We will use a slight
modification:
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Let X be an object of D(A), where is an abelian category satisfying
AB4*, and let ~Xn~ Xn-1~··· ~ Xo be a sequence of objects in D(A),
together with maps X 6 X compatible with the sequence maps. Then the

composite X - 03A0Xi 
1-shift 

IIXt is zero, so there is a deduced map
X ~ holim (Xi). If for every n, the map Hn(X) ~ Hn(Xi) is eventually an
isomorphism, then we get a short exact sequence

and one immediately deduces that the morphism X ~ holim (Xi) is a
homology isomorphism, hence an isomorphism. (2.3.1)

APPLICATION 2.4. Let A be an abelian category satisfying AB4* with
enough injectives. Then every object of D(A) is quasi-isomorphic to a complex
of injectives.

Proof. Let X~D(A) be arbitrary. Then D(A) has a natural t-structure, and
we denote by Xn the truncation of X above dimension n. There is a natural
map X ~ Xn which is a homology isomorphism in dimension n, and Xn
vanishes in dimensions n - 1.

Because A has enough injectives, we can choose a quasi-isomorphism
Xn ~In (we use the fact that the complex Xln is bounded below). The diagram

defines in the derived category a morphism In-1 ~ I n, but as these are bounded
below complexes of injective objects, we can choose a chain map realizing this
morphism. Now we have morphisms

a is a quasi-isomorphism because of (2.3.1), and fi is a quasi-isomorphism
because it is a holim of quasi-isomorphisms. But holim (I -,,) is, by construction,
a complex of injectives. 

n 

D

REMARK 2.5. Although everything that has preceded is completely trivial, the
sequence of triviality has got us someplace. Application 2.4 seems new. The
classical constructions, such as in [Ha], Section 1, permit the reader to find for
every object in D(A) a quasi-isomorphic complex of injectives only under very
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stringent hypotheses of finite injective dimension, and the argument used there is
not as trivial as ours.

More significant then the statement of Application 2.4 is the proof. We proved a
little more than we stated. What we actually have is:

APPLICATION 2.4’. Let K be the colocalizing subcategory of D(.9I) generated
by bounded below complexes of injectives. That is, K is a full subcategory
containing the bounded below complexes of injectives, and is closed under direct
products and the formation of triangles (i.e. the dual of a localizing subcategory;
see Definition 1.3). Then every object of D(/) is isomorphic to an object of K.

IL

DEFINITION 2.6. Let i7 be a triangulated category, L ~ S an épaisse
subcategory (see Definition 1.3). An object Y~S is called L-local if, for every
X E L, Hom(X, Y) = 0.

REMARK 2.7. This definition is initially due to Sullivan, but was used by
Adams and very extensively by Bousfield. We will return to this definition in
Section 4. For now, the example we want the reader to have in mind is Example
1.6: S = K(A) is the category of complexes of objects in A with homotopy
equivalence classes of maps, and L is the subcategory of acyclic objects. We
have:

LEMMA 2.8. With Y = K(A), L the category of acyclic complexes, if I is a
bounded below complex of injectives, then I is L-local.

Proof. This is just the standard fact that any map from an acyclic complex to
a bounded below complex of injectives is null homotopic. D

LEMMA 2.9 (well-known). Let Y be a triangulated category, L a localizing
subcategory and Y an L-local object. Suppose X is any object of f/. Then

Proof. (Included only for the convenience of the reader). A map in YIL from
X to Y is a diagram in:

where a is a quasi-isomorphism. That is, in the triangle X’ ~ X ~ Z EX,
Z E L. But then
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is exact; i.e. there is a (unique) factorization

which proves that HomS(X, Y) ~ Hom9’/L(X, Y) is surjective. But if f : X - Y is
a morphism in S which maps to zero in S/L, then it factors as X ~ Z - Y with
Z E L, but as Y is local, the map Z ~ Y is zero. D

Now we note:

LEMMA 2.10. Let Y be a triangulated category, L ~ S an épaisse subcategory.
Then the full subcategory of all L-local objects in S is épaisse.

Proof. Trivial. D

LEMMA 2.11. Let Y be a triangulated category with products, L an épaisse
subcategory. Then the subcategory of L-local objects is colocalizing. (i.e. it is

closed under arbitrary direct products).
Proof. Clear. D

Let A be an abelian category satisfying AB4*. Then set K(I) to be the smallest
colocalizing subcategory of K(A) containing the bounded below complexes of
injectives. By Lemma 2.11, K(I) consists of L-local objects in K(A). If A has
enough injectives, then we know from Application 2.4’ that every object in D(A)
is quasi-isomorphic to a complex in K(I). Thus we deduce:

PROPOSITION 2.12. Let W be an abelian category with enough injectives
satisfying AB4*. Then the composite functor:

is an equivalence of categories. D

Of course, everything we have done is easily dualizable. If A is an abelian
category with enough projectives satisfying AB4, then the composite

is an equivalence of categories, where K(P) is the smallest localizing subcategory
containing the bounded above projectives.

REMARK 2.13. The complexes in K(I) are, among other things, complexes of
injective objects. We call them special complexes of injectives. Similarly the
objects of K(P) will be called special complexes of projectives. In fact, the entire
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point of this section is that they offer the right framework for doing homological
algebra in the unbounded derived category.

THEOREM 2.14. Let A be an abelian category with a tensor product satisfying
AB4 and AB4*, with enough injectives and projectives. Then there exist functors:

and

which satisfy all reasonable good properties.
Proof. The point is that LQ and RHom are easy to define on K(A). But now

we know that D(A) is isomorphic to subcategories of K(A), and this permits us
to define LQ as a map

and RHom as a map

and the fact that this is reasonable is left largely to the reader. D

REMARK 2.15. If A has an internal Hom functor, or an internal tensor

product, then of course one can define on the derived category

The following is a list of some good properties of these constructions. All proofs
are left to the reader.

(2.16.1) The tensor is symmetric and associative; there are natural

isomorphisms

and
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(2.16.2) The tensor commutes with triangles and direct sums in either variables.
In particular, it commutes with hocolim.

(2.16.3) For objects in D-(A), it reduces to the usual tensor.

(2.16.4) RHom commutes with triangles in each factor.

(2.16.5) RHom sends direct sums in the first factor, and direct products in the
second, to direct products.

The following lemma is so crucial in [N2], that we feel it deserves to be proved
here.

LEMMA 2.17. Let R be a commutative ring, a : R - k a homomorphism of R into
a field k. Let X be an arbitrary object of D(R). Then X 0 k is a direct sum of
suspensions of k. 

Proof. Put X = hocolim Xi, Xii bounded above. Then X~k = hocolim

X i~ k. But this hocolim is really being taken in D(k), and the result is an object
in D(k) c D(R); i.e. X (8) k is a direct sum of suspensions of k. D

3. Totalizing a complex

Let S be a triangulated category. Let ···~Xn~Xn-1~··· ~X0 = 0 be a
sequence of maps in Y. Then sometimes it may happen that one can totalize the
complex. (Precisely, one tries to copy the construction of passing from a double
complex to its total, single complex). What this entails is the following. Complete
X2 ~ X1 to a triangle X2 ~ X1 ~ yl - EX 2. Because the composite
X3 ~ X2 ~ X1 is zero, we can lift to 03A3X3 ~ yl- If we are lucky, the composite
03A3X4 ~ 03A3X3 ~ YI will be zero, and then we can iterate. Assuming that the
iteration works, we get a diagram, which we will schematically indicate

If everything so far has gone without a hitch, one defines the totalization of the
sequence {Xn}, denoted by |{Xn}|, by the formula:

There is already some literature about this construction, which has been studied
in the topological setting by [C] and [W], and in the derived category by [K].
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There are well-known obstructions to the lifting process, the so-called Toda
classes. It is perhaps simplest to illustrate with an example.

Let us choose any triangle X Y - Z EX in Y. Consider the complex

We assert that for almost all triangles in just about any triangulated category,
this complex cannot be totalized.
The first step of the totalization process is to complete Y - Z to a triangle.

Then we look for a map a

where f°03B1 = f and aog = 0.
Because a 0 g = 0, 03B1 = ~°f Because f - (1 - a) = 0, 1 - a = g° 0. Thus

1X = g°0398+~°f, and so if a exists it would follow that the triangle
X - Y - Z ~ 03A3X is contractible. (See N1). This is extremely rare.
What we have shown here, is that for the triangle 03A3-1Z~X~Y~Z, the

first Toda class is the identity map 03A3(03A3-1Z) = Z~ Z. Also, for very formal
reasons that is rarely zero. The way Toda classes have traditionally been used by
topologists is to construct non-zero maps in homotopy. Thus the main interest
has centered around constructing examples where the totalization process is
obstructed.

What we would like to suggest is that a very interesting question, which ought
to be pursued further, is to find useful sufficient conditions for the existence, and
maybe also the uniqueness of the totalization. We do not have such a useful
criterion. But to illustrate what we want, let us give the following, nearly useless
result:

PROPOSITION 3.1. Let us be given the sequences of objects of S and maps:

and suppose that ik+1°ik=0 and ik°jk°ik = ik. Then there is a way to

"functorially" totalize the complex, in particular the complex has a totalization.
Given a morphism of complexes (i.e. maps of complexes commuting with both
the i’s and j’s) then it induces a (non-unique) morphism of totalizations. And an
isomorphism of complexes induces an isomorphism of totalizations.
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Proof. The point is that after choosing

such that g° a = i1, we can replace a by 03B1°j1° i1. Then we still have go a = i1,
but now clearly (03B1°j1° il) 0 i2 = 0. And of course, we can then iterate.
Now what about the functoriality? Given maps of complexes

(Xi, i,j} - {Xn, i,j} we can choose a morphism of triangles

Of course, for this choice of fi we have no assurance that the diagram

will commute. However, if we compose with the projection Y, ~ 03A3X1, we must
get equality. That means that the map 03B2°03B1’-03B1°f2 is a composite

By construction, a’ - 03B1’°j’1°i’1 and a = a °j1° il (after all, we replaced our
arbitrary a by a 0 jl °j1, and (j1° i1)° (j1° i1) = j1 ° i1.

Therefore we deduce
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Thus we may replace p by p°j’1° i’1. But fi may be replaced by p - ho (p°j’)° g’,
and an easy computation establishes that for the new fl the square

actually commutes. Once again, one may iterate. D

As we said, this should not be viewed as an interesting criterion in its own right,
but rather as an indication of the sort of result one should be looking for. With
this aid, let us nevertheless exhibit an application of Proposition 3.1.

PROPOSITION 3.2. Let i7 be a triangulated category with direct sums. Suppose
e: X - X is an idempotent in Y. Then e is split in Y.

Proof. The idea is to totalize the complex

Precisely, by Proposition 3.1, the following three complexes may be totalized

And it is trivial to show that (1) E9 (2) is isomorphic to (3). Thus the same is true
on the totalizations. Let the totalization of (1) be Y, the totalization of (2), Z.
Then X = Y E9 Z, and the reader can check that 1 - e is zero

on Z, e is zero on Y D

REMARK 3.3. The reader may observe that there are other ways to prove

Proposition 3.2, which avoid using Proposition 3.1. In this Remark, we will
outline such a proof. Nevertheless, the proof above is the "right" proof, in a sense
that will be made precise soon.

Observe that we have three sequences
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and (3) éé (1) Q (2). Thus hocolim (1) e hocolim(2) = hocolim(3) = X gives a
direct sum decomposition of X into the kernels of 1 - e and e.

PROPOSITION 3.4. Let R be a ring, Db(R) the derived category of finite
complexes of finitely generated projective R-modules. Then every idempotent in
Db(R) is split.

Proof. Let X be an object of Db(R), e: X - X idempotent. As in the proof of
Lemma 3.2, we can construct totalizing sequences

and

and we know that

is the required splitting of X.
But there is a map colim(Yi) ~ hocolim(Yi) which is a quasi-isomorphism by

2.2.1, and the sequence Y is a sequence of objects in Db(R), and in each degree the
sequence is ultimately stable. It follows that colim(Yi)~D-(R), but more

specifically it is a bounded above complex of finitely generated projectives. Thus
X = Y ED Z where Y and Z may be chosen bounded above complexes of finitely
generated projectives.
Suppose X = XI" is a complex of projective objects in degree n. Then

Xn = Y’" O Zn. Furthermore,

and from this it is easy to deduce that Y’" and Zn are complexes of projectives,
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and the finite generation follows immediately from the finite generation in each

degree for Y and Z. 0

4. Arbitrary colimits and localizations

Until now, we have been very modest in our constructions; the only homotopy
colimits we have so far dealt with are direct sums and the colimit of a countable

sequence. There is of course an extensive literature on homotopy colimits. We
will not even try to sketch what is known. Let us just say what happens if we try
to copy the standard constructions of Bousfield and Kan in a triangulated
category.

Let /7 be a triangulated category with direct sums. Let F : I ~ S be a functor
from the small category I to /7. To construct hocolim F, one considers the

simplicial set (I), the nerve of the category I, and the chain complex F:

where the map ô is the alternating sum of the differentials. The homotopy
colimit of F is IFI, the totalization of the chain complex F. It would be very nice
to know whether F can always be totalized, preferably in a functorial way.
Perhaps one needs to make some hypothesis on 1; in applications, 7 is nearly
always a totally ordered, or even a well ordered set.
What we want to observe is the following:

LEMMA 4.1. Let Y and Y be triangulated categories with enough direct sums,
and let G : T ~ S be a triangulated functor which preserves direct sums. If
F: I ~ T is a functor from a small category 1 into T, and if F has a hocolim in T,
then G(hocolim (F)) is a hocolim of Go F in f/. ~

REMARK 4.2. In the case where G:T~S is an inclusion, one gets a little
more; namely all S-colimits of functors into Y are in 1 (note that with hocolim
as we defined it, neither existence nor uniqueness is clear).

Let L be an épaisse subcategory of the triangulated category S. We recall
(Definition 2.6) that Y is L-local if for every X E L, Hom(X, Y) = 0.

DEFINITION 4.3 (Bousfield). With Y and L as above, a morphism X ~ Y is
called a localization if

(1) Y is L-local

(2) For any L-local object Z, the natural map Hom( Y, Z) ~ Hom(X, Z) is an
isomorphism.


