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Let A be an abelian variety defined over a number field K and let D be a
symmetric divisor on A. Néron and Tate have proven the existence of a
canonical height hA,D on A(k) characterized by the properties that hA,D is a
Weil height for the divisor D and satisfies A,D([m]P) = m2hA,D(P) for all
P ~ A(K). Similarly, Silverman [19] proved that on certain K3 surfaces S
with a non-trivial automorphism ~: S ~ S there are two canonical height
functions hs characterized by the properties that they are Weil heights for
certain divisors E ± and satisfy ±S(~P) = (7 + 43)±1±S(P) for all P E S(K) .
In this paper we will generalize these examples to construct a canonical
height on an arbitrary variety V possessing a morphism ~: V - V and a
divisor class q which is an eigenclass for 0 with eigenvalue strictly greater
than 1. We will also prove a number of results about these canonical heights
which should be useful for arithmetic applications and numerical compu-
tations. We now describe the contents of this paper in more detail.

Let V be a variety defined over a number field K, let ~: V ~ V be a
morphism, and suppose that there is a divisor class q E Div(V) ~ R such
that 0*,q = aq for some 03B1 &#x3E; 1. Our first main result (Theorem 1.1) says that
there is a canonical height function

characterized by the two properties that V,~,~ is a Weil height function for
the divisor class ~ and
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164

As an application of the canonical height, we show that if 17 is ample, then
V(K) contains only finitely many points which are 0-periodic, generalizing
results of Narkiewicz [13] and Lewis [10].
Néron (see [8]) has shown how to decompose the canonical height hl,D on

an abelian variety into a sum of local heights, A,D(P) = 03A3 nVÂA,D(P, v), where
the sum is over the distinct places v of K(P). We likewise show that the
canonical height V,~,~ constructed in Theorem 1.1 can be decomposed as a
sum

Here E is any divisor in the divisor class q, and

is a Weil local height function for the divisor E with the additional property
that if f is any function satisfying ~*E = aE + div( f ), then there is a constant
a so that

The existence of the canonical local height V,~,~ is proven in Theorem 2.1,
and the fact that the canonical height V,~,~ is the sum of the local heights is
given in Theorem 2.3.
Any two Weil heights for a given divisor differ by a bounded amount, so

in particular the difference of the canonical height V,~,~ and any given Weil
height hV,~ is bounded by a constant depending on V, q, 0 and hV,~. For
many applications it is important to have an explicit bound for this constant.
Such a bound was given by Dem’janenko [4] and Zimmer [25] for Weierstrass
families of elliptic curves, by Manin and Zarhin [12] for Mumford families
of abelian varieties, and by Silverman and Tate [15] for arbitrary families of
abelian varieties. We follow the approach in [15] and consider a family V - T
of varieties with a map 0: V ~ V over T and a divisor class 7y satisfying
~*~ = 03B1~. Then on almost all fibers ’V, there is a canonical height Vt,~t~t,
and we can ask to bound the difference between this height and a given Weil
height hV,~ in terms of the parameter t. In Theorem 3.1 we show that there
are constants ci, C2 so that
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We also give (Theorem 3.2) a similar estimate for the difference between
the canonical local height Vt,Et,~t and a given Weil local height AV,E . This
generalizes Lang’s result [8] for abelian varieties.

Suppose now that the base T of the family V- T is a curve, let hT be a
Weil height on T corresponding to a divisor of degree 1, and let P: T ~ V
be a section. The generic fiber V of Y is a variety over the global function
field K(T), the section P corresponds to a rational point Pv e V(K(T)), and
Theorem 1.1 gives a canonical height Vt,~V,~V which can be evaluated at
the point Pv. There are then three heights V,~V,~V, Vt,~t,~V, and hT which
may be compared. Generalizing a result of Silverman [15], we show in
Theorem 4.1 that

Silverman’s original result has been generalized and strengthened in various
ways by Call [2], Green [6], Lang [8, 9], Silverman [20] and Tate [22]. We
have not yet been able to prove any of these stronger results in our general
situation.

In the fifth section we take up the question of how one might efficiently
compute the canonical local heights V,E,~, and thereby eventually the canoni-
cal global height hV,E,CP’ In the case that V is an elliptic curve, Tate (unpub-
lished) gave a rapidly convergent series for V,(O),[2](P, v) provided that the
completion Kv of K at v is not algebraically closed, and Silverman [18]
described a modification of Tate’s series which works for all v. We give
series for our canonical local heights Â V,E,cp generalizing the series of Tate
(Proposition 5.1) and Silverman (Theorem 5.3) and briefly discuss how such
series could be implemented in practice.
The final section is devoted to a description of canonical local heights for

non-archimedean places in terms of intersection theory. In the case of abelian
varieties it is known that the local heights can be computed using intersection
theory on the Néron model. We show in general that if V has a model V
over a complete local ring Ov such that every rational point extends to a
section and such that the morphism 0: V ~ V extends to a finite morphism
(D: V ~ V, then the canonical local height is given by a certain intersection
index on V. We leave for future study the question of whether such models
exist.

To summarize, in this paper we develop a theory of global and local
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canonical heights on varieties possessing morphisms with non-unit divisorial
eigenclasses. We describe how these heights vary in algebraic families and
give algorithms which may be used for computational purposes.
The theory of canonical heights on abelian varieties has had profound

applications throughout the field of arithmetic geometry. Likewise, several
arithmetic applications and many open questions for K3 canonical heights
are described in [19]. It is our hope that the general theory of canonical
heights described in this paper will likewise prove useful in studying the
arithmetic properties of varieties.

1. Global canonical heights

In this section we fix the following data:
K a global field with a complete set of proper absolute values satisfying

a product formula. We will call such a field a global height field, since
it is for such fields that one can define a height function on pn( K).
(For example, K could be a number field or a one variable function
field. )

V/K a smooth, projective variety.
0 a morphism ~: V ~ V defined over K.
~ a divisor class q E Pic(V) 0 R.

hV,~ a Weil height function hV,~: V(K) ~ R corresponding to ~.
(See [8], Chapters 2, 3, 4, for details about global height fields and height
functions on varieties.) We further assume that q is an eigenclass for 0 with
eigenvalue greater than 1. In other words, we assume that

It follows from functoriality of height functions [8] that

The Ov(1) depends on the variety V, the map 0, and the choice of Weil
height function hV,~, but it is bounded independently of P E V (K). Our first
result says that there exists a Weil function associated to ~ for which the

Ov(1) entirely disappears.

THEOREM 1.1. With notation as above, there exists a unique function
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satisfying the following two conditions :

We call the function V,~,~ described in Theorem 1.1 the canonical height
on V associated to the divisor class ~ and the morphism 0. If one or more
of the elements of the triple (V, q, 0) is clear, we will sometimes omit it
from the notation.

Example 1. Let A be an abelian variety, let [n] : A - A be the multiplica-
tion-by-n map for some n  2, and let q E Pic(A) be a symmetric divisor.
(That is, [-1]*~ = q.) As is well-known, one then has the relation [n]*=
n2TJ, so one obtains a canonical height h~ = hA,~,[n] satisfying ~(nP) =
n2~(P). This is the classical canonical height constructed by Néron and Tate.
(See, for example, [8, Chapter 5].) Our proof of Theorem 1.1 is an easy
extension of Tate’s argument to a slightly more general setting.

Example 2. Let S C P2 X P2 be a smooth K3 surface given by the intersec-
tion of a (2, 2)-form and a (1, 1)-form. The two projections S~P2 are
double covers, so each gives an involution on S, say o-1, 0-2: S~ S. Let

Ç1, e2 F- Pic(S) be hyperplane sections of type (1, 0) and (0, 1) respectively,
let 0 = 2 + B13, and define divisor classes on S by the formulas

Further let 0 = 0’2 0 03C31. Then one can check that

so we obtain two canonical heights hS,~,~+ and hS,~-1,~-. It is worth noting
that ~+ and ~- each lie on the boundary of the effective cone in Pic(S) ~ R,
but that their sum ~+ + ~- is ample. This observation is useful for studying
the arithmetic of S. For more details concerning this example, including a
proof of the facts we have stated and explicit formulas that can be used to
compute the canonical height, see [19] and [3].

Example 3. Let 0: IPn ~ Pn be a morphism of degree d : 2. Then any
divisor class q E Pic(Pn) ~ 7L satisfies ~*~ = d~, so we can apply Theorem
1.1. (This had earlier been observed by Tate, but never published.) Notice
that just as in the case of abelian varieties, one can take q to be ample,
which means that Corollary 1.1.1 below is applicable.

Using the canonical height, we can easily prove a strong rationality result
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for pre-periodic points. We recall that a point P is called pre-periodic for ~
if its orbit

is finite. (Equivalently, P is pre-periodic if some iterate ~i(P) is periodic.)
The following corollary gives a strong rationality bound for pre-periodic
points. It generalizes results of Narkiewicz [13] and Lewis [10], who prove
that there are only finitely many K-rational pre-periodic points in the cases
V = An and V = Pn respectively. Lewis’ proof, in particular, uses basic pro-
perties of Weil height functions, but our use of the canonical height reduces
the proof to just a few lines.

COROLLARY 1.1.1. Let 0: V/K ~ VIK be a morphism defined over a
number field K, and suppose that there is an ample divisor class q satisfying
(1). Let P E V (K).
(a) P is pre-periodic for 4J if and only if hV,7J,f/J(P) = 0.
(b) V (K) contains only finitely many pre-periodic points for 0. More gen-

erally,

is a set of bounded height, so in particular it contains only finitely many
points defined over all extensions of K of a bounded degree.

Proof. (a) If P is pre-periodic for 0, then hV,~(~n(P)) takes on only finitely
many distinct values, and so

Conversely, if hV,~,~(P) = 0, then

Hence the set {P, O(P), ~2(P), ...} is a set of bounded height, so it is finite.
(Note this is where we use the fact that ~ is ample.) Therefore P is pre-
periodic.

(b) If P is pre-periodic for ~, then V,~,~(P) = 0 from (a), so hV,~(P) =
V,~,~(P) + 0(l) is bounded. This shows that the pre-periodic points form a
set of bounded height. The rest of (b) is then immediate, since a set of
bounded height contains only finitely many points defined over fields of
bounded degree. D



169

The proof of Theorem 1.1 uses the following result, whose clever telescoping-
sum argument is due to Tate.

PROPOSITION 1.2. With notation as above, let c(V) = c(V, 0, hV,~) be a
bound for the OV(1) in (2). In other words,

Then for any point P E V (K) the limit

exists and satisfies

Proof. Let P E V(K), and let n  m . 0 be integers. Then

This inequality shows that the sequence 03B1-nh~(~nP) is Cauchy, so the limit
(4) defining hV,7J,cp(P) exists. Now put m = 0 in (6) and let n ~ ~ to obtain
the estimate

which completes the proof of Proposition 1.2. D

Proof. (of Theorem 1.1). We define hV,7J,cp by the formula (4) in Proposition
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1.2. Then (5) tells us that V,~,~ satisfies property (i) of Theorem 1.1, while
property (ii) is immediate from the definition (4):

It remains to check that V,~,~ is unique. Suppose that ’V,~,~ is another
function satisfying (i) and (ii), and let g = V,~,~ - ’V,~,~. Then (i) implies
that g is bounded, while (ii) says that g(~P) = ag(P). Hence

Since a &#x3E; 1 by assumption, it follows that g(P) = 0, and since P E V (K) was
arbitrary, there is only one function satisfying (i) and (ii). This completes
the proof of Theorem 1.1. D

2. Canonical local heights

In this section we are going to develop a theory of canonical local heights,
analogous to the theory of Néron local heights on abelian varieties. Summing
the results of this section over all absolute values, we then recover Theorem
1.1, albeit with a far more complicated proof. We will use the following
notation, much of it carried over from Section 1:

K a global height field with set of absolute values MK. (See Section
1.)

M = MK the set of absolute values on K extending those on K.
VlK a smooth projective variety.
0 a morphism 0: V ~ V defined over K.
E a divisor E E Div(V) 0 R.

.tv,E a (Weil) local height function 03BBV,E: (V B JE 1) x M - R associated
to the divisor E. (Here to ease notation we write V in place of
V(K).)

For basic facts about local height functions, MK-bounded functions and
MK-constants, see [8], Chapter 10. We will freely use terminology from [8]
without further reference.
We further assume that the divisor class of E is an eigenclass for 0:
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Here - denotes linear equivalence of divisors. Thus the divisor class [E] E
Pic(V) ~ R of E satisfies the condition (1) imposed on q in Section l.

THEOREM 2.1. (a) With notation as above, there exists a function

with the following properties:
(i) V,E,~ is a Weil local height function corresponding to the divisor E.

(ii) Let f E K(V)* ~ R be a function such that

Then there is a constant a E K * 0 R, depending on f and V,E,~, such that

as functions on (V B (JE U 1 O*E 1» x M.
If ’V,E,~ is another function satisfying (i) and (ii), then there is a constant

b E K* 0 R such that

(b) Equivalently, given any function f E K(V)* ~ R satisfying (8) there

exists a unique function

which is a Weil local height for the divisor E and which satisfies

Remark. A "function" f~K(V)*~R is really a formal product
f = 03A0 f~ii with each fi e K(V) a rational function on V and each Ei E R. The
"value" of f at a point P E V(K) is the formal product 03A0f~ii(P). (Note for
example that the field K may have positive characteristic, so raising to a real
power may not make sense.) However, it makes sense to define the divisor
of f to be
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and similarly if v E M is an absolute value on K, then we can define v( f(P))
to be the real number

This explains the symbols used in part (ii) of Theorem 2.1.
We begin by proving a variant of a lemma of Tate described in [8], Chapter

11, Lemma 1.2.

LEMMA 2.2. Let  be a topological space, let 0:.!E  be a côntinuous

function, let a E R be a real number satisfying 03B1 &#x3E; 1, and let

be a bounded continuous function. Then there exists a unique bounded con-
tinuous function y:  ~ R satisfying

Further,  satisfies

Proof. Let BC(!, R) be the Banach space of bounded continuous func-
tions on X, and let Il.11 be the sup norm on BC(£, R). Consider the operator

Then for any 51, 03B42 E BC(, R) and any x ~  we have

Since a &#x3E; 1, we see that S is a shrinking map, so by standard fixed point
theorems on Banach spaces we know that S has a unique fixed point
 E BC(, R). Now the definition of S and the fact that Si = y gives the
desired relationship
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To get a precise estimate, we first note that for any x ~ ,

so taking the supremum over x gives

Now we compute

This shows that the sequence (S"y)(x) is Cauchy for any x E ae, so we can
define a function

Clearly the function à satisfies Sâ = à, and it is not hard to verify that à is
continuous, so à is just the function y from above. Then putting m = 0 in
(14) and letting n go to infinity gives



174

which is clearly stronger than (11). D

Proof. (of Theorem 2.1). Let AV,E be a fixed local height function associ-
ated to the divisor E. The divisor relation (8) and standard properties of
local height functions ([8], Chapter 10) imply that there is an MK-bounded
and MK-continuous function y : V x M ~ R such that

for all v E M and all P E V outside of some Zariski closed subset. Note that

y itself actually extends to all of V by [8], Chapter 10, Proposition 2.3 and
Corollary 2.4.
To ease notation, we will write yv(P) instead of y(P, v). For each v e MK

we know that l’v: V(K) ~ R is v-continuous (since y is MK-continuous) and
bounded (since y is MK-bounded). Applying Lemma 2.2 to the function yv,
the morphism ~: V ~ V, and the real number a &#x3E; 1 appearing in (8), we
produce a new v-continuous and bounded function

The function v satisfies

Now we observe that since y is MK-bounded, the functions ~v are identically
0 for all but finitely many v E MK. It follows from (18) that the same is true
for the "’s. In other words, the map

is MK-continuous and MK-bounded.
We now define V,E,~,f by the formula

The fact that ÿ is MK-continuous and MK-bounded means that it is a local
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height function associated to the zero divisor, so V,E,~,f is a local height
function associated to E. Further, combining the relations (16) and (17) with
the definition (19) gives

This proves the existence half of (b).
To show that V,E,~,f is unique, we suppose that Â’v,E,CP,t is another such

function, and let A = ÀV,E,CP,f - V,E,~,f be the difference. Then A is a local
height corresponding to the divisor E - E = 0, so it extends to an

MK-bounded and MK-continuous function on all of V x M. Next from (10)
we see that A satisfies

But (·, v) is bounded on V (K), we can let m ~ ~ to obtain A(P, v) = 0.
This gives the uniqueness half of (b).
Next we claim that any such V,E,~,f from (b) will have the properties (i)

and (ii) in (a). It is clear that V,E,~,f has property (i), since it is a Weil local
height for E. Similarly, if f’ E K(V)*~R is another function satisfying (8),
then div( f l f ’) = 0, so f = a f ’ for some constant a E K*~R. Hence (20)
becomes the desired result

This proves the existence part of (a).
The uniqueness part of (a) can then be proven exactly as we proved (b).

Or, alternatively, we can observe that if V,E,~ satisfies (i) and (ii) and if we
pick a function f satisfying (8) and the corresponding a in (9), then the
function

satisfies (9), so is uniquely determined from (b). Hence V,E,~ is uniquely
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determined up to addition of a function of the form (P, v) H v(b) for a
constant b. 

We conclude this section by showing that the global height from Section 1
is the sum of the local heights constructed in this section.

THEOREM 2.3. Fix notation as in Theorem 1.1 and 2.1, and let ÂV,E,4, be a
canonical local height associated to E and 0. Then for all finite extensions
LIK and all points P E V (L) B lEI,

(The absolute values in ML are to be normalized as described in [8].)
Proof. The canonical local height V,E,~ is in particular a Weil local height

associated to the divisor E, so [8], Chapter 10, Section 4, tells us that the
function

extends to a global Weil height

which is well-defined on all of V and depends only on the linear equivalence
class q of E. In particular, F7J differs from any given hV,~ by a bounded
function.

Next let f E K(V)* 0 R be a function satisfying

Then Theorem 2.1. tells us that there is a constant a E K * 0 R such that

for all (P, v) E V x M with P, ~P ~ |E|. Taking a finite extension L/K with
P E V(L) and a E L, we multiply (21) by [Lv: Kv], sum over v E ML, and
divide by [L : K]. Note that the product formula gives
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so we obtain F~(~P) = 03B1F~(P). In other words, we have shown that F~
satisfies

for all points P with P, ~P ~ |E|. But F~ depends only on the lineat equival-
ence dass q of E, so by varying E in this class we find that (22) is valid on
all of V. It follows from (22) and the uniqueness assertion in Theorem 1.1
that F7J = V,~,~, which completes the proof of Theorem 2.3. D

3. Variation of the canonical height in families of varieties

Theorem 1.1(i) says that the canonical height and the Weil height on a
variety differ by a bounded amount, where the bound depends (among other
things) on the variety. In this section we will consider an algebraic family of
varieties and will show how the bound varies as one moves along the family.
The following notation will be used for this section and the next section.
K a global height field (cf. section 1).

TlK a smooth projective variety.
hT a fixed Weil height function on T associated to an ample divisor,

chosen to satisfy hT  0.
V/K a smooth projective variety.

7T a morphism ir: V ~ T defined over K whose generic fiber is smooth
and irreducible.

~ a rational map 0: V/T ~ V/T, defined over K, such that 0 is a morph-
ism on the generic fiber of V/T. Note our assumption that 0 is defined
on VI T means that 03C0° 0 = 7T.

~ a divisor class q E Pic(V) Q9 R.
T0 the subset of T having "good" fibers,

T0 = tt E T: Vt is smooth and Ot: Vt ~ Vt is a morphism}.

[Here and in what follows we use a subscript t to denote restriction
def

to the fiber Vt = 7T-1(t).]
We further make the assumption that there is a real number 03B1 &#x3E; 1 such

that


