@article{CM_1993__89_3_301_0, author = {Van den Ban, E. P. and Schlichtkrull, H.}, title = {Convexity for invariant differential operators on semisimple symmetric spaces}, journal = {Compositio Mathematica}, pages = {301--313}, publisher = {Kluwer Academic Publishers}, volume = {89}, number = {3}, year = {1993}, mrnumber = {1255699}, zbl = {0798.58083}, language = {en}, url = {http://archive.numdam.org/item/CM_1993__89_3_301_0/} }
TY - JOUR AU - Van den Ban, E. P. AU - Schlichtkrull, H. TI - Convexity for invariant differential operators on semisimple symmetric spaces JO - Compositio Mathematica PY - 1993 SP - 301 EP - 313 VL - 89 IS - 3 PB - Kluwer Academic Publishers UR - http://archive.numdam.org/item/CM_1993__89_3_301_0/ LA - en ID - CM_1993__89_3_301_0 ER -
%0 Journal Article %A Van den Ban, E. P. %A Schlichtkrull, H. %T Convexity for invariant differential operators on semisimple symmetric spaces %J Compositio Mathematica %D 1993 %P 301-313 %V 89 %N 3 %I Kluwer Academic Publishers %U http://archive.numdam.org/item/CM_1993__89_3_301_0/ %G en %F CM_1993__89_3_301_0
Van den Ban, E. P.; Schlichtkrull, H. Convexity for invariant differential operators on semisimple symmetric spaces. Compositio Mathematica, Tome 89 (1993) no. 3, pp. 301-313. http://archive.numdam.org/item/CM_1993__89_3_301_0/
[1] A convexity theorem for semisimple symmetric spaces, Pac. J. Math. 124 (1986), 21-55. | MR | Zbl
:[2] Asymptotic behaviour of matrix coefficients related to reductive symmetric spaces, Proc. Kon. Nederl. Akad. Wet 90 (1987), 225-249. | MR | Zbl
:[3] The most continuous part of the Plancherel decomposition for a reductive symmetric space. In preparation.
and :[4] Multiplicities in the Plancherel decomposition for a semisimple symmetric space. In (R. L. Lipsman e.a. eds) Representation Theory of Groups and Algebras, Contemp. Math., Vol. 145, p. 163-180. Amer. Math. Soc., Providence 1993. | MR | Zbl
and :[5] Opérateurs différentiels invariants sur un groupe de Lie, Sém. Goulaouic-Schwartz 1972-73 (1973), Exposé X, p. X.1-X.9. | Numdam | MR | Zbl
and :[6] Global solvability of the Laplacians on pseudo-Riemannian symmetric spaces, J. Funct. Anal. 34 (1979), 481-492. | MR | Zbl
:[7] Invariant differential operators and P-convexity of solvable Lie groups, Adv. in Math. 46 (1982), 284-304. | MR | Zbl
:[8] Solvability of invariant differential operators of principal type on certain Lie groups and symmetric spaces, J. d'Anal. Math. 37 (1980), 118-127. | MR | Zbl
:[9] Convexité pour les operateurs différentiels invariants sur les groupes de Lie, Math. Zeit. 167 (1979), 61-80. | MR | Zbl
and :[10] Spherical functions on a real semisimple Lie group. A method of reduction to the complex case, J. Funct. Anal. 30 (1978), 106-146. | MR | Zbl
:[11] Analysis on Non-Riemannian Symmetric Spaces, Regional Conference Series in Math. 61, Amer. Math. Soc., Providence 1986. | MR | Zbl
:[12] Spherical functions on a semisimple Lie group, I, Amer. J. Math. 80 (1958), 241-310. | MR | Zbl
:[13] Fundamental solutions of invariant differential operators on symmetric spaces, Amer. J. Math. 86 (1964), 565-601. | MR | Zbl
:[14] The surjectivity of invariant differential operators on symmetric spaces I, Ann. of Math. 98 (1973), 451-479. | MR | Zbl
:[15] Groups and Geometric Analysis, Academic Press, Orlando 1984. | MR | Zbl
:[16] Invariant differential operators and Weyl group invariants. In (W. Barker and P. Sally, eds.) Harmonic Analysis on Reductive Groups, Bowdoin College 1989, Birkhäuser, Boston 1991, p. 193-200. | MR | Zbl
:[17] Linear Partial Differential Operators, Springer Verlag, Berlin 1963. | MR | Zbl
:[18] Eigenspaces of invariant differential operators on a semisimple symmetric space, Invent. Math. 57 (1980), 1-81. | EuDML | MR | Zbl
and :[19] Global solvability of the Casimir operators, Ann. of Math. 103 (1976), 229-236. | MR | Zbl
and :[20] Invariant differential equations on certain semisimple Lie groups, Trans. Amer. Math. Soc. 243 (1978), 97-114. | MR | Zbl
:[21] Harmonic Analysis on Symmetric Spaces, Birkhäuser, Boston 1984. | MR
:[22] Linear Partial Differential Equations, Gordon and Breach, New York 1970. | Zbl
:[23] Commutative Algebra, Vol. I, Van Nostrand, Princeton 1958. | MR | Zbl
and :