The Kodaira dimension of certain moduli spaces of abelian surfaces
Compositio Mathematica, Tome 90 (1994) no. 1, pp. 1-35.
@article{CM_1994__90_1_1_0,
     author = {Hulek, K. and Sankaran, G. K.},
     title = {The {Kodaira} dimension of certain moduli spaces of abelian surfaces},
     journal = {Compositio Mathematica},
     pages = {1--35},
     publisher = {Kluwer Academic Publishers},
     volume = {90},
     number = {1},
     year = {1994},
     mrnumber = {1266492},
     zbl = {0799.14026},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1994__90_1_1_0/}
}
TY  - JOUR
AU  - Hulek, K.
AU  - Sankaran, G. K.
TI  - The Kodaira dimension of certain moduli spaces of abelian surfaces
JO  - Compositio Mathematica
PY  - 1994
SP  - 1
EP  - 35
VL  - 90
IS  - 1
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1994__90_1_1_0/
LA  - en
ID  - CM_1994__90_1_1_0
ER  - 
%0 Journal Article
%A Hulek, K.
%A Sankaran, G. K.
%T The Kodaira dimension of certain moduli spaces of abelian surfaces
%J Compositio Mathematica
%D 1994
%P 1-35
%V 90
%N 1
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1994__90_1_1_0/
%G en
%F CM_1994__90_1_1_0
Hulek, K.; Sankaran, G. K. The Kodaira dimension of certain moduli spaces of abelian surfaces. Compositio Mathematica, Tome 90 (1994) no. 1, pp. 1-35. http://archive.numdam.org/item/CM_1994__90_1_1_0/

[Ba] W.L. Baily: Fourier-Jacobi Series. In: Proc. Symp. Pure Math. IX, AMS, Providence, R.I., (1966), 296-300. | MR | Zbl

[BH] W. Barth, K. Hulek: Projective models of Shioda modular surfaces. Manuscr. Math. 50 (1985), 73-132. | MR | Zbl

[EZ] M. Eichler, D. Zagier: The theory of Jacobi forms. Progress in Mathematics 55. Birkhäuser, Boston, Basel, Stuttgart 1985. | MR | Zbl

[F] E. Freitag: Siegelsche Modulfunktionen. Grundlehren 254, Springer, Berlin 1983. | MR | Zbl

[Fu] W. Fulton: Intersection theory. Springer, Berlin 1984. | MR | Zbl

[H] R. Hartshorne: Algebraic geometry. Springer, New York, 1977. | MR | Zbl

[Hir] F. Hirzebruch: Elliptische Differentialoperatoren auf Mannigfaltigkeiten. Gesammelte Werke Vol. 2, 583-608. Springer, Berlin, 1987. | MR

[HM] G. Horrocks, D. Mumford: A rank 2 vector bundle on P4 with 15,000 symmetries. Topology 12 (1973), 69-85. | MR | Zbl

[HKW1] K. Hulek, C. Kahn, S.H. Weintraub: Singularities of the moduli spaces of certain abelian surfaces. Compositio Math. 79 (1991), 231-253. | Numdam | MR | Zbl

[HKW2] K. Hulek, C. Kahn, S.H. Weintraub: Moduli spaces of abelian surfaces: Compactification, degenerations and theta functions. de Gruyter, Berlin 1993. | MR | Zbl

[HW] K. Hulek, S.H. Weintraub: Bielliptic abelian surfaces. Math. Ann. 283 (1989), 411-429. | MR | Zbl

[K] J. Kramer: A geometrical approach to the theory of Jacobi forms. Compositio Math. 79 (1991), 1-19. | Numdam | MR | Zbl

[M1] D. Mumford: Hirzebruch's proportionality theorem in the non-compact case. Inv. Math. 42 (1977), 239-272. | MR | Zbl

[M2] D. Mumford: On the Kodaira dimension of the Siegel modular variety. Algebraic Geometry-Open Problems, Proceedings Ravello 1982, 348-375 (C. Ciliberto et al., Eds) Springer Lecture Notes 997, Springer, Berlin, 1983. | MR | Zbl

[O'G] K O'Grady: On the Kodaira dimension of moduli spaces of abelian surfaces. Compositio Math. 72 (1989), 121-163. | Numdam | MR | Zbl

[Sch] B. Schoeneberg: Elliptic modular functions. Grundlehren 203, Springer, Berlin, 1974. | MR | Zbl

[Sh] G. Shimura: Introduction to the arithmetic theory of automorphic functions. Publ. Math. Soc. Japan 11, Iwanami Shoten, Tokyo, and Princeton University Press, 1971. | MR | Zbl

[Shi] T. Shioda: On elliptic modular surfaces. J. Math. Soc. Japan 24 (1972), 20-59. | MR | Zbl

[SC] A. Ash, D. Mumford, M. Rapoport, Y. Tai: Smooth compactification of locally symmetric varieties. Math. Sci. Press, Brookline, Mass., 1975. | MR | Zbl

[T] Y. Tai: On the Kodaira dimension of the moduli spaces of abelian varieties. Inv. Math. 68 (1982), 425-439. | MR | Zbl

[YPG] M. Reid: Young person's guide to canonical singularities. Proc. Symp. Pure Math. 46 (Algebraic Geometry Bowdoin 1985), 345-416 (1987). | MR | Zbl