Quantum deformations of the Lorentz group. The Hopf-algebra level
Compositio Mathematica, Tome 90 (1994) no. 2, pp. 211-243.
@article{CM_1994__90_2_211_0,
     author = {Woronowicz, S. L. and Zakrzewski, S.},
     title = {Quantum deformations of the {Lorentz} group. {The} {Hopf-algebra} level},
     journal = {Compositio Mathematica},
     pages = {211--243},
     publisher = {Kluwer Academic Publishers},
     volume = {90},
     number = {2},
     year = {1994},
     mrnumber = {1266253},
     zbl = {0798.16026},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1994__90_2_211_0/}
}
TY  - JOUR
AU  - Woronowicz, S. L.
AU  - Zakrzewski, S.
TI  - Quantum deformations of the Lorentz group. The Hopf-algebra level
JO  - Compositio Mathematica
PY  - 1994
SP  - 211
EP  - 243
VL  - 90
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1994__90_2_211_0/
LA  - en
ID  - CM_1994__90_2_211_0
ER  - 
%0 Journal Article
%A Woronowicz, S. L.
%A Zakrzewski, S.
%T Quantum deformations of the Lorentz group. The Hopf-algebra level
%J Compositio Mathematica
%D 1994
%P 211-243
%V 90
%N 2
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1994__90_2_211_0/
%G en
%F CM_1994__90_2_211_0
Woronowicz, S. L.; Zakrzewski, S. Quantum deformations of the Lorentz group. The Hopf-algebra level. Compositio Mathematica, Tome 90 (1994) no. 2, pp. 211-243. http://archive.numdam.org/item/CM_1994__90_2_211_0/

[1] Podleś, P. and Woronowicz, S.L.: Quantum deformation of Lorentz group, Commun. Math. Phys. 130 (1990) 381-431. | MR | Zbl

[2] Woronowicz, S.L. and Zakrzewski, S.: Quantum Lorentz group having Gauss decomposition property, Publ. R.I.M.S., Kyoto University 28 (1992) 809-824. | MR | Zbl

[3] Drinfeld, V.G.: Quantum Groups, pp. 798-820 in Proceeding of the ICM, Berkeley, 1986, AMS 1987. | MR | Zbl

[4] Sojbelman, J.S.: Irreducible representations of the algebra of functions on the quantum SU(N) group and Schubert cells, Dokl. Akad. Nauk. SSSR 307 (1989) 41-45 (in Russian). | Zbl

[5] Faddeev, L.D., Reshethikin, N. Yu., and Takhtajan, L.A.: Quantization of Lie groups and Lie algebras, Algebra i analiz 1 (1989) 178-206 (in Russian). | MR | Zbl

[6] Manin, Yu. I.: Quantum groups and non-commutative geometry, Pub. C.R.M. Montréal (1988). | MR | Zbl

[7] Manin, Yu. I.:Leçons Collége de France (1989).

[8] Dubois-Violette, M. and Launer, G.: The quantum group of a non-degenerate bilinear form, Physics LettersB, Vol. 245, No. 2 (1990) 175-177. | MR | Zbl

[9] Podleś, P.: Complex quantum groups and their real representations, Publ. R.I.M.S., Kyoto University 28 (1992) 709-745. | MR | Zbl

[10] Woronowicz, S.L.: Compact matrix pseudogroups, Commun. Math. Phys. 111 (1987) 613-665. | MR | Zbl

[11] Woronowicz, S.L.: New deformation of SL(2, C). Hopf-algebra level, Rep. Math. Phys. 30 No. 2 (1991) 259-269. | Zbl

[12] Zakrzewski, S.: Hopf *-algebra of polynomials on the quantum SL(2, R) for a "unitary" R-matrix, Lett. Math. Phys. 22 (1991) 287-289. | MR | Zbl

[13] Zakrzewski, S.: Realifications of complex quantum groups, in Groups and related topics, R. Gielerak et al. (eds.), Kluwer 1992, 83-100. | MR | Zbl

[14] Zakrzewski, S.: Poisson structures on the Lorentz group, preprint, Warsaw, March 1993. | Zbl