@article{CM_1994__90_2_211_0, author = {Woronowicz, S. L. and Zakrzewski, S.}, title = {Quantum deformations of the {Lorentz} group. {The} {Hopf-algebra} level}, journal = {Compositio Mathematica}, pages = {211--243}, publisher = {Kluwer Academic Publishers}, volume = {90}, number = {2}, year = {1994}, mrnumber = {1266253}, zbl = {0798.16026}, language = {en}, url = {http://archive.numdam.org/item/CM_1994__90_2_211_0/} }
TY - JOUR AU - Woronowicz, S. L. AU - Zakrzewski, S. TI - Quantum deformations of the Lorentz group. The Hopf-algebra level JO - Compositio Mathematica PY - 1994 SP - 211 EP - 243 VL - 90 IS - 2 PB - Kluwer Academic Publishers UR - http://archive.numdam.org/item/CM_1994__90_2_211_0/ LA - en ID - CM_1994__90_2_211_0 ER -
Woronowicz, S. L.; Zakrzewski, S. Quantum deformations of the Lorentz group. The Hopf-algebra level. Compositio Mathematica, Tome 90 (1994) no. 2, pp. 211-243. http://archive.numdam.org/item/CM_1994__90_2_211_0/
[1] Quantum deformation of Lorentz group, Commun. Math. Phys. 130 (1990) 381-431. | MR | Zbl
and :[2] Quantum Lorentz group having Gauss decomposition property, Publ. R.I.M.S., Kyoto University 28 (1992) 809-824. | MR | Zbl
and :[3] Quantum Groups, pp. 798-820 in Proceeding of the ICM, Berkeley, 1986, AMS 1987. | MR | Zbl
:[4] Irreducible representations of the algebra of functions on the quantum SU(N) group and Schubert cells, Dokl. Akad. Nauk. SSSR 307 (1989) 41-45 (in Russian). | Zbl
:[5] Quantization of Lie groups and Lie algebras, Algebra i analiz 1 (1989) 178-206 (in Russian). | MR | Zbl
, Yu., and :[6] Quantum groups and non-commutative geometry, Pub. C.R.M. Montréal (1988). | MR | Zbl
:[7] Leçons Collége de France (1989).
:[8] The quantum group of a non-degenerate bilinear form, Physics LettersB, Vol. 245, No. 2 (1990) 175-177. | MR | Zbl
and :[9] Complex quantum groups and their real representations, Publ. R.I.M.S., Kyoto University 28 (1992) 709-745. | MR | Zbl
:[10] Compact matrix pseudogroups, Commun. Math. Phys. 111 (1987) 613-665. | MR | Zbl
:[11] New deformation of SL(2, C). Hopf-algebra level, Rep. Math. Phys. 30 No. 2 (1991) 259-269. | Zbl
:[12] Hopf *-algebra of polynomials on the quantum SL(2, R) for a "unitary" R-matrix, Lett. Math. Phys. 22 (1991) 287-289. | MR | Zbl
:[13] Realifications of complex quantum groups, in Groups and related topics, R. Gielerak et al. (eds.), Kluwer 1992, 83-100. | MR | Zbl
:[14] Poisson structures on the Lorentz group, preprint, Warsaw, March 1993. | Zbl
: