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Abstract. We prove a surjectivity result on rings of twisted differential operators on partial flag
varieties stated by Vogan. In the process we derive an interesting parabolic analogue of the famous
Bernstein-Gelfand equivalence of categories and exhibit a new class of modules for which Kostant’s
problem has a positive solution.
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1. Introduction

Rings (and more generally sheaves) of twisted differential operators on partial
flag varieties (called TDO’s for short) were introduced by Beilinson and
Bernstein in [1] and studied intensively by Borho and Brylinski [3,5]. They
have turned out to have very deep and extensive connections with the

representation theory of complex reductive groups. Perhaps the most striking
such connection is the category equivalence between modules of a fixed regular
infinitesimal character over an enveloping algebra and quasi-coherent sheaves
of modules over the corresponding sheaf of TDO’s. A key step in the proof of
this equivalence is a surjectivity result: given certain conditions on the twisting
parameter, the corresponding ring of TDO’s is actually a quotient of the
enveloping algebra. (In general, all one can say is that a ring of TDO’s is a
primitive Dixmier algebra over a primitive quotient of the enveloping algebra.)
Vogan has stated the same surjectivity result under rather different conditions
on the twisting parameter. He does not give a proof, remarking only that the
result is "fairly subtle" and "one of the keys to the Beilinson-Bernstein

localization theory". Nor can one find a proof in [1] or [3]. The purpose of
this paper is to prove Vogan’s assertion, using ideas rather different from those
of [3]. In fact, it will drop out of an interesting parabolic analogue of the
Bernstein-Gelfand equivalence of categories between Harish-Chandra bi-

modules for complex groups and modules in category (9.

2. Notation and set-up

Let G be a complex connected reductive group with Lie algebra g, P a

parabolic subgroup with Lie algebra p, and Po the commutator subgroup of

*Partially supported by NSF Grant DMS-9107890.
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P. Choose a Cartan subgroup H with Lie algebra h contained in p and a set
of positive roots A +(g, b) contained in the set of 1)-roots in p. Write

Po = MoN, a Levi decomposition with H c Mo,

0394+(m0, h) = choice of positive roots of  in mo induced from 0394+(g, b),
S = corresponding choice of simple roots of h in mo,

Using standard identifications we may identify t* with u/n and regard it as
a subspace of b*; more precisely, we have h* = t* + ( n mo)*. The "twisting
parameters" of the introduction are elements 03BE of t*. Given such a 03BE, we
construct the Beilinson-Bernstein ring A03BE of TDO’s as follows. Start with the
ring Diff G/Po of algebraic differential operators on GIPO. There is a left

G-action and a commuting right T action on G/Po. Differentiating these

actions, we get a map from U(g) Q U(t) to Diff G/P 0’ where U(.) as usual
denotes the enveloping algebra of a Lie algebra. Set

A = centralizer of T in Diff G/Po; (2.1)

then we get a map (D: U(g) - A. Now bring 03BE into the picture by letting I03BE be
the ideal of A generated by all H + (03BE - p 1)(H) for all He t. These elements are
central in A, since p is trivial on Lie Po. Finally, we set

the ring of (03BE-) TDO’s on G/P. The map 03A6 induces a map

It is not difficult to see that A03BE is finitely generated over 03A603BE(U(g)). In this paper
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we are primarily concerned with conditions under which 03A603BE is surjective. Before
we can state Vogan’s sufficient condition, we need a definition.

DEFINITION 2.4. Assume that Àeb* takes positive integral values on

0394+ (m0, )). We say that À is dominant if it does not take a negative integral
value on any positive coroot (relative to 0+(g, )). We say that 03BB is n-

antidominant if it does not take a positive integral value on any positive coroot
not in 0394+(m0, ).
The main result of this paper is

THEOREM 2.5 ([12, 3.9(c)]). With notation as above, the map 03A603BE is surjective.
whenever 03BE + po is dominant.

The reason for the appearance of Po is that 03BE + po, when regarded as an
element of 4* as above, is the infinitesimal character of A, [3, 3.6]. What Borho
and Brylinski show in [3, 3.8] is that (D, is surjective whenever 03BE + Po is

n-antidominant, using deep results of Conze-Berline and Duflo in [6]. Certain-
ly 03A603BE is not always surjective; a counterexample in type B2 is given in [6,6.5].
On the other hand, if p happens to be a Borel subalgebra, then 03A603BE is always
surjective. Vogan gives an intersecting example in type C4 where 03A603BE fails to be
surjective even though its image has full multiplicity in A03BE. There should be
many more examples of this last phenomenon; it is intimately related to the
failure of certain nilpotent orbit closures to be normal.

3. Proof of Theorem 2.5 and an équivalence of categories

The first step of the proof of Theorem 2.5 is the same as that of the parallel
result in [3].

LEMMA 3.1 ([3, 3.8]). We may identify Aç with the ring Ai := 2(Mp(ç + Po),
Mp(03BE + po)) of G-finite maps from the generated Verma module

to itself; here p acts on the one-dimensional module Cç+po-p by making p0 act
trivially and t act by the character 03BE + po - p.

Borho and Brylinski then complete their proof by invoking [6,2.12,4.7,6.3] to
show that the natural map U(g) - A’03BE is surjective for n-antidominant ç + p.
These results do not apply if 03BE + p is dominant (the key difficulty being that

Mp(ç + po) is not irreducible), so we must take another path.
We begin by noting that Mp(03BE) is a projective object in the full subcategory

(9p of category (9 consisting of the p-locally finite modules. Moreover, if 03BE is



308

regular, then by applying an appropriate translation functor to Mp(03BE) one
obtains a projective generator for the subcategory (9,p,, of modules in Ob (9p
with infinitesimal character 03BE [2]. The ring A03BE-03C1o should therefore have some
equally pleasant properties in an appropriate category of Harish-Chandra
bimodules. Our first step, which is of considerable interest in its own right, is
to describe this category. To state the main result, we need some notation. Let
03BB ~ h* take positive integral values on 0394+(m0, h) . Then one has the generalized
Verma module Mp(03BB) relative to p of highest weight 03BB - p; denote its unique
irreducible quotient by L(03BB). Let W be the Weyl group of G and »i the integral
Weyl subgroup relative to 03BB. As the terminology indicates, we may indeed
regard W1 as a subgroup of W. Denote by W(m o) the Weyl group of mo; it too
is a subgroup of W, and in fact a subgroup of g. Write wo, wm, w03BB for the

longest elements of W, W(mo), and g, respectively. Then we have

THEOREM 3.2. Fix a coset A of the weight lattice of g in 1)* and a dominant
regular representative À of A taking integral values on 0394+(m0, h)). Then there is
an equivalence of categories

between the subcategory Op,03BB:= (9v,A of Op consisting of modules with all weights
in A and the subcategory Y,6,@Â of all finitely generated Harish-Chandra
bimodules over U(g) that are annihilated by Ann L(w03BBwm03BB) on the right. The
equivalence is implemented by the maps

from (Dp,Â (resp. Hp,03BB) to Hp,03BB (resp. Op,03BB). Moreover, we also have

(Mp(03BB), Mp(03BB)) ~ U(g)/Ann L(w. w m)03BB).
Proof. Of course, our starting point is the famous Bernstein-Gelfand equiv-

alence of categories [2, 5.9(i)], which is precisely the first assertion above in the
special case where p is a Borel subalgebra b. (The second assertion, which is
actually needed in the course of proving the first one, follows from a classical
result of Kostant.) Using this equivalence, we will often allow ourselves to
speak of the right annihilator RAnn M of an object M in (DA by identifying M
with a Harish-Chandra bimodule. Then RAnn M depends on a choice of
infinitesimal character, which will always be clear from context. In general, let
b be a Borel subalgebra contained in p. Then Op,03BB is a full subcategory of Ub,n
and so is equivalent to a subcategory of Hb,03BB. We must identify this

subcategory precisely. Recall that a typical M E Ob (91,A lies in Ob (9p,Â if and
only if the shifted highest weights À’ of its irreducible subquotients L(;,’)
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all take positive integral values on S". Equivalently, thanks to [9, 5.2], M lies
in Ob Op,03BB if and only if the right annihilator of any of its irreducible

subquotients has i-invariant not meeting S. But now the r-invariant of a
typical primitive ideal I of infinitesimal character fails to meet S if and only
if 7 contains Ann L(w;. wmÀ) [8, 5.20]. Hence an M in Ob (9b,A lies in Ob Op,03BB if
and only if its right annihilator contains some power of Ann L(w03BBwm03BB). But
Ann L(w03BBwm03BB)/Ann L(w03BB03BB) is idempotent ([7, 4.4], [9, 4.5]). Thus the categories
(9",;. and Hp,03BB are indeed equivalent via the Bernstein-Gelfand maps

It remains to show that these maps coincide with those of the theorem. This is

easy in the first case. Given M c- Ob Op,03BB, the multiplicity of a typical finite-
dimensional g-module E in the adjoint action on (M(03BB), M) is just the
dimension of Homg(M(03BB), M Q E*). Since M Q E* is mo-locally finite, any
g-map from M(03BB) to M Q9 E* must factor through the largest mo-locally finite
quotient Mp(À) of M(03BB). Hence the natural injection (Mp(03BB), M) ~
2(M(À), M) is an isomorphism. In the second case, we must work harder; we
begin by proving the second assertion of the theorem. Clearly U := U(g)/
Ann L(w03BBwm03BB) is an object in Hp,03BB, so it may be realized as 2(Mp(À), M) for
some object M in (9p,¡. Since U contains a copy of the scalar field C as its
subring of G-invariants, there is a nonzero homomorphism n : Mp(03BB) ~ M.
Since the copy of C in U generates the latter as a U(g) bimodule, the image of
03C0 also generates M, whence is surjective. Now it is easy to see that U is
projective in Hp,03BB, whence M must be projective in Op,03BB. Since Mp(03BB) is

indecomposable projective in Ob Op,03BB, we get M ~ Mp(03BB), as desired.
Now one has a short exact sequence

It is enough to show that the image of the natural map X ~U(g) K(03BB) --+
X Ou(g) M(03BB) is zero. Put 1: = Ann L(w03BBwm03BB). Then IM(03BB) c K(03BB) and it suffices
to show that equality holds (since XI ~U(g) M(03BB) = 0). This follows since

I = Ann M(03BB)/K(03BB) and IM(À) is the only submodule M’of M(À) with

I = Ann M/M’ [10, 4.3]. Hence both Bernstein-Gelfand maps coincide with
their counterparts in the theorem. D

Theorem 2.5 follows at once for regular infinitesimal characters from Theorem
3.2. By combining [6, 5.8] with [ 13, 4.32], one obtains a formula for multiplicit
is of K-types in (Mp(03BB), Mp(03BB)) or U(g)/Ann L(w03BBwm03BB). We will extend
Theorems 2.5 and 3.2 to arbitrary infinitesimal characters in the next section;
for now we conclude this section with
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COROLLARY 3.4. The socle E of Mp(03BB) is simple. If 03A3 ~ L(w03BB), then the left
and right cells of w (regarded as an element of W03BB) coincide with those of
WÀ. wm’ Wm WÀ.’ respectively.

Proof. It is well known and easy to check that Mp(03BB) may be obtained from
a module induced from a one-dimensional p-module via a translation functor.
It follows at once as in [11, §6] that E is simple and that its annihilator

coincides with that of Mp(03BB). Now the result follows from Joseph’s well-known
formulas for the annihilators of simple Harish-Chandra bimodules [9, 5.2]. D

That socles E of generalized Verma modules with dominant highest weights
are simple has long been known to the experts, but no one to my knowledge
has given a formula for E. Corollary 3.4 suffices to pin down X exactly in type
A, but not in the other types. Note that Theorem 3.2 shows in particular that
Kostant’s problem has a positive answer for Mp(03BB). One can similarly show
that Kostant’s problem has a positive solution for E.

4. Singular infinitesimal characters

We conclude the paper with two analogues of Theorem 3.2 for dominant
weights that are not necessarily regular. In both cases one gets an equivalence
of categories between a certain subcategory Op,03BB of category (9 and the category
Hp,039B of Harish-Chandra bimodules defined in Theorem 3.2. The definition of
Op,03BB depends on whether or not 03BB is singular on S.
Again let A be a coset of the weight lattice in 1)* and 03BB an element of A +,

the set of dominant weights in A. Assume first that 03BB takes positive (integral)
values on S. Let B? be the set of roots corresponding to the simple reflections
in g fixing 03BB; then we have B’ n S = Qf . Denote by (9p,À. the full subcategory
of (9,,A consisting of those modules that are P03BB-presentable in the sense of
Bernstein and Gelfand [2, §§1,5]. (Thus, in contrast to the last section, we do
not have Op,03BB = (9,,A.) Then one has

THEOREM 4.1. With notation as above, T heorem 3.2 holds for Op,03BB and Hp,03BB.
Proof. One can repeat the proof of Theorem 3.2, starting from [2, 5.9(ii)]

rather than [2, 5.9(i)]. Since B° automatically lies in the r-invariant of w03BBwm,
we can combine [4,2.12] and [8, 5.19] to show that if M is an object in (!)b,À.’
then M lies in Ob Op,03BB if and only if the radical of its right annihilator contains
I := Ann L(w À. wmÀ). Thus we get an equivalence of categories between Op,03BB and
the subcategory H’p,03BB of Hb,03BB consisting of those bimodules annihilated by
some power of 7 on the right. The equivalence is effected by the maps
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Now it follows as in the proof of Theorem 3.2 that (Mp(03BB), Mp(03BB)) ~ U(g)/l.
Finally, we claim that J:= 12 + Ann L(w03BB03BB) = 1 and IM(2) = K(2) (notation
(3.3)); given these facts, the rest of the proof of Theorem 3.2 carries over. To
prove the claims, note that U(g)/J certainly lies in Ob H’p,03BB, whence U(g)/
J ~U(g) M(03BB) ~ M(03BB)/I2M(03BB) lies in Ob (9,,,. Since 12 M(Â) C 1 M(2) c K(03BB) and
Mp(03BB) is the largest mo-locally finite quotient of M(03BB), we must have

J M(2) = 1 M(2) = K(2), whence J = 1 [10, 4.3], as desired. In particular,
H’p,03BB yew p,Â ~

Theorem 4.1 implies that Theorem 2.5 holds in general. Finally, we consider
what happens when 2 is allowed to be singular on S. Fix A, A + as above and
now assume only that 2 E A + takes (nonnegative) integral values on SV. Define
B? as above and set S003BB = Bo n S.

DEFINITION 4.2. Denote by (Çp,À the full subcategory of (ÇA consisting of
those modules M that are P03BB-presentable and in addition satisfy the following
condition: if N is a simple U(mo)-subquotient of M, then R AnnU(m)N has
i-invariant lying in S003BB. (This condition makes sense and is independent of the
choice of regular integral infinitesimal character of R AnnU(m)N because any
such N is a simple highest weight U(mo)-module of intergral infinitesimal
character.) Also denote by Mp(03BB) the U(g)-module induced from the simple
U(p)-module of highest weight 2 - p on which n acts trivially.

Note that (9p,, is no longer subcategory of Op,039B in this situation, as the modules
in it are not in general mo-locally finite.

LEMMA 4.3. Fix 21,22 e A + and write Wl, W2 for the parabolic subgroup of »i
corresponding to B21’ B22’ Fix W1, W2 of maximal length in their left cosets

w1W1, w2 W2, respectively. Choose any regular representative 2’ of 039B+. Then
there is a finite-dimensional module E such that L(w203BB2) is a subquotient of
L(w103BB1) ~ E if and onl y if Ann L(w-12 03BB’) ~ Ann L(w-11 03BB’) (this last condition is
well known to be independent of the choice of 2’).

Proof. This is well known if both 21 and Â2 are regular [8, 7.13]. In general,
suppose that L(w203BB2) appears in (i.e., is a subquotient of) L(w103BB1) 0 E.
Translating L(w203BB2) off the B003BB2 walls, we deduce that L(w203BB’) appears in
L(w103BB1) (D E (with a different E). Translating L(w103BB’) onto the B003BB1 walls, we
see that L(w203BB’) also appears in L(w103BB’) ~ E (again with a different E)
[8, 4.12, 4.13]. Hence Ann L(w-12 03BB’) ~ Ann L(w- 1103BB’ ), since 2’ is regular. A
similar argument shows that L(W2Â2) appears in L(w103BB1) (DE for some E
whenever Ann L(w-1203BB’) ~ Ann L(w- 1103BB’) and completes the proof. ~

COROLLARY 4.4. Mp(2) is the unique largest quotient of M(2) belonging to

Ob (9,,,. In general, a typical P03BB-presentable module M lying in Ob (DA belongs
to Ob Op,03BB if and only if its simple subquotients L(w03BC) satisfy the following
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condition: f Jl c- 039B+ and w E W03BB is chosen to have maximal length in its coset wW003BC,
then 03C4039B(w-1) ~ S ~ S003BB.

Proof. The U(mo)-submodule N of Mp(03BB) generated by its highest weight
vector is simple of highest weight 03BB, whence one checks directly that it satisfies
Definition 4.2. Any other simple U(m0)-subquotient N’ of Mp(03BB) appears in
N (8) E for some E, whence by [8, 5.19] and Lemma 4.3 it too satisfies

Definition 4.2. Hence Mp(03BB) ~ Ob Op,03BB. The same argument shows that the
criterion of the corollary for lying in Ob Op,03BB is sufficient ; to see its necessity,
look at the U(mo)-submodule of any U(g)-subquotient L(wp) of M generated
by the highest weight vector of L(w03BC). It remains to show that any quotient M’
of M(03BB) lying in Ob Op,03BB is actually a quotient of Mp(À); for this it suffices to
show that the U(mo)-submodule M" generated by the highest weight vector of
M’ is simple. Definition 4.2 guarantees that AnnU(mo)M" is maximal of

infinitesimal character 03BB. We are therefore reduced to proving the following
claim: if vc-A’, so that I03BD:=Ann L(03BD) is a maximal ideal, then M(v)/
I03BDM(03BD)) ~ L(v) (so that the only quotient of M(v) with annihilator I,, is L(v) ; we
apply this fact to Verma modules over U(mo)). To prove the claim, note that
the equivalence of categories yields 2(M(v), M(v)) ~U(g) M(v) ~ L(v). But U(g)/
1 v embeds into !l’(L(v), L(v)), which embeds into 2(M(v), L(v)), so that U(g)/
I03BD~U(g) M(03BD) ~ M(v)jlvM(v) embeds into L(v). The claim follows at once. (We
also recover the known result that (L(v), L(v)) ~ U(g)/l,, .) D

At last we can state

THEOREM 4.5. With notation as above, Theorem 3.2 holds for 19p,¡ and Y,6 ;,,.Z
Proof. We imitate the proof of Theorem 4.1. Using [8,5.19] and [4,2.12]

one may rephrase the necessary and sufficient condition of Corollary 4.4 for a
P03BB-presentable module M to lie in Ob Op,03BB as follows: whenever L(wp) is a

simple subquotient of M, 03BC ~ 039B+, and we g has maximal length in its W003BC
coset, then RAnn L(w03BC) ~ Ann L(w03BBwmw003BB’), where RAnn L(wp) is taken to

have infinitesimal character Â’ (notation (4.3)) and wo is the longest element in
the parabolic subgroup of g corresponding to S$. Equivalently, M is in 19p,¡
if and only if its simple subquotients L(w03BC) satisfy RAnn L(wp)
~ Ann L(w03BBwm03BB), where RAnn L(wp) is taken to have infinitesimal character

03BB. By Corollary 4.4, the maps M ~ 2(M p(l), M), X H X Q9U(g) M(Â) define
equivalences of categories between Op,03BB and the subcategory H’p,03BB defined as
in the proof of Theorem 4.1. Arguing again as in the proof of Theorem 3.2 and
using the projective indecomposability of Mp(03BB) in Ob Op,03BB, we see that

(Mp(03BB)), Mp(03BB)) ~ U(g)/I (notation (4.1)). Arguing as in the proof of Theorem
4.1 and using Corollary 4.4 again, we show that I2 + Ann L(w03BB03BB) = I (so that
H’p,03BB = Hp,03BB) and that the map from H’p,03BB to Op,03BB may be replaced by the
one in Theorem 3.2. D
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That I/Ann L(w03BB03BB) is idempotent in the settings of Theorems 4.1 and 4.5 seems
to be new. If 03BB is regular, then Ann L(w03BBw03BB)/Ann L(w03BB03BB) is idempotent
whenever w is the longest element of any parabolic subgroup of g (not just
of W). 1 do not know whether this is still true if 03BB is singular.
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