Compositio Mathematica

A. Van DaELE
 S. Van Keer
 The Yang-Baxter and pentagon equation

Compositio Mathematica, tome 91, $\mathrm{n}^{\circ} 2$ (1994), p. 201-221
http://www.numdam.org/item?id=CM_1994__91_2_201_0
© Foundation Compositio Mathematica, 1994, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

The Yang-Baxter and Pentagon equation

A. VAN DAELE and S. VAN KEER
Department of Mathematics, K.U. Leuven, Celestijnenlaan 200 B, B-3001 Heverlee, Belgium

Received 6 January 1992; accepted in final form 10 April 1993

1. Introduction

Let A be a finite-dimensional Hopf algebra and let A° be the dual Hopf algebra with opposite comultiplication (see e.g. [1]). The algebraic tensor product $A \otimes A^{\circ}$ can be made into a quasi-triangular Hopf algebra (see e.g. [3]). The comultiplication is essentially the tensor product of the comultiplications on A and A°, but the multiplication is in general different from the usual tensor product multiplication. However, when A and A° have a unit 1, the mappings $a \mapsto a \otimes 1$ and $b \mapsto 1 \otimes b$ are Hopf algebra embeddings and $a \otimes b=(a \otimes 1)(1 \otimes b)$ in $A \otimes A^{\circ}$. We will identify A and A° with their images in $A \otimes A^{\circ}$ and so we will use $A A^{\circ}$ to denote this quasi-triangular Hopf algebra. Remark that in general A and A° will not commute with each other.

Consider also the tensor product $A A^{\circ} \otimes A A^{\circ}$. It is clear that $A^{\circ} \otimes A$ is a subspace of $A A^{\circ} \otimes A A^{\circ}$. The canonical element W (i.e. the identity map when $A^{\circ} \otimes A$ is identified with the space $L(A, A)$ of linear maps from A to A) is an invertible element in $A A^{\circ} \otimes A A^{\circ}$, where now we do take the usual tensor product structure. This W intertwines the comultiplication Δ on $A A^{\circ}$ with the opposite comultiplication Δ^{\prime} in the sense that $\Delta(a)=W \Delta^{\prime}(a) W^{-1}$ when $a \in A A^{\circ}$. Moreover W satisfies the Yang-Baxter equation in $A A^{\circ} \otimes A A^{\circ} \otimes A A^{\circ}$, that is

$$
W_{12} W_{13} W_{23}=W_{23} W_{13} W_{12}
$$

when $W_{12}=W \otimes 1, W_{23}=1 \otimes W$ and W_{13} is the obvious image of W with 1 in the middle (see e.g. [3] and [14]).

In the infinite-dimensional case, this construction breaks down for several reasons. First the dual space A^{\prime} of A is no longer a Hopf algebra in the sense that the obvious candidate Δ for the comultiplication will not map A^{\prime} into $A^{\prime} \otimes A^{\prime}$ (but only in $(A \otimes A)^{\prime}$, which is strictly larger). In many of the well-known examples however, there are enough elements $b \in A^{\prime}$ such that $\Delta(b) \in A^{\prime} \otimes A^{\prime}$, and since these elements form a Hopf algebra (see [12, page 109]), this first difficulty can easily be overcome in many cases.

The second problem is that in the infinite-dimensional case $L(A, A)$ is bigger than $A^{\circ} \otimes A$ and that the canonical element W is not in $A^{\circ} \otimes A$. So, strictly speaking, the intertwining property and the Yang-Baxter equation have only a formal meaning. This problem can be overcome by considering finite-dimensional representations π of A so that $(1 \otimes \pi)(W)$ is an element of $A^{\circ} \otimes \pi(A)$. These elements satisfy the right properties.

In the infinite-dimensional case there is a need for a topological approach using topological tensor products and allowing the comultiplication to go outside the algebraic tensor product. This seems to be very difficult. The C*-algebra approach of Woronowicz to quantum groups ([15]) is not yet completely satisfactory, but has the advantage that much is known about topological tensor products here. The approach of Baaj and Skandalis ([2 and $11]$) is close to the C^{*}-algebra approach of Woronowicz. They work with the Pentagon equation

$$
W_{12} W_{13} W_{23}=W_{23} W_{12}
$$

which is similar to the Yang-Baxter equation and is obtained in the finitedimensional case above if we make $A \otimes A^{\circ}$ into an algebra in a different way. Moreover, the C^{*}-algebra approach seems to be impossible in some cases (e.g. for the Hopf ${ }^{*}$-algebra generated by two self-adjoint elements a and b such that a is invertible and $a b=\lambda b a$ with $|\lambda|=1$), see also [16].

In this paper we make an attempt to get a precise interpretation of the formal construction of Drinfel'd. This has also been done by others. Woronowicz gave solutions of the Yang-Baxter equation (in fact the Braid equation) in the space of linear maps on $A \otimes A \otimes A$ [17]. There is also an attempt to give a precise meaning to the Yang-Baxter equation in the algebraic dual $\left(A A^{\circ} \otimes A A^{\circ} \otimes A A^{\circ}\right)^{\prime}$ by Koornwinder [5]. Here again, some extra conditions are necessary (like the existence of the Hopf subalgebra A° in the dual space $\left.A^{\prime}\right)$. We need no extra conditions on A. And we treat the Pentagon equation, as well as the Yang-Baxter equation. We also work in the framework of Hopf*-algebras (so that the W becomes a unitary element).

Our approach is as follows. Let A be any Hopf*-algebra (over \mathbb{C}). For any *-algebra D one can make the space $L(A, D)$ of linear maps from A to D into a^{*}-algebra. If $D=\mathbb{C}$ we get of course the space A^{\prime} of linear functionals on A with the usual ${ }^{*}$-algebra structure. In section 2 of this paper we introduce the notion of a twisted tensor product of two *-algebras A and B. Our construction is a generalisation of similar constructions in literature. In [13], given two Hopf algebras A and B, an action of A on B and a coaction of B on A satisfying certain compatibility conditions, Takeuchi constructs a Hopf algebra structure on the tensor product $A \otimes B$. S. Majid has elaborated further on this work in [6, 7, 8 and 9]. We work with a pair of ${ }^{*}$-algebras A and B together with a linear map $R: B \otimes A \rightarrow A \otimes B$ satisfying certain conditions and we construct a *-algebra structure on $A \otimes B$.

If we apply our construction to A and A^{\prime} and the right map R, we get the algebra $A A^{\prime}$ from above. If we apply it once more to A and $L\left(A, A A^{\prime}\right)$, we obtain an algebra that we will denote by $A A^{\prime} \otimes A A^{\prime}$ because it is $A A^{\prime} \otimes A A^{\prime}$ in the finite-dimensional case and because $A A^{\prime} \otimes A A^{\prime}$ is a dense subalgebra of $A A^{\prime} \bar{\otimes} A A^{\prime}$ in general (if we consider the appropriate topology). The identity map W in $L\left(A, A A^{\prime}\right)$ is a unitary in $A A^{\prime} \bar{\otimes} A A^{\prime}$. One more application of the above construction yields a ${ }^{*}$-algebra $A A^{\prime} \bar{\otimes}\left(A A^{\prime} \bar{\otimes} A A^{\prime}\right)$. The algebra $A A^{\prime}$ $\bar{\otimes} A A^{\prime}$ has three obvious embeddings in this algebra. The first one is $x \rightarrow 1 \otimes x$. The two others come from the two embeddings $x \rightarrow x \otimes 1$ and $x \rightarrow 1 \otimes x$ of $A A^{\prime}$ into $A A^{\prime} \otimes A A^{\prime}$ that naturally extend to embeddings $L\left(A, A A^{\prime}\right) \rightarrow L\left(A, A A^{\prime} \bar{\otimes} A A^{\prime}\right)$ and further to $A A^{\prime} \bar{\otimes} A A^{\prime} \rightarrow A A^{\prime} \bar{\otimes}\left(A A^{\prime} \bar{\otimes} A A^{\prime}\right)$. The three images W_{23}, W_{12} and W_{13} of W under these maps satisfy the Yang-Baxter equation $W_{23} W_{13} W_{12}=W_{12} W_{13} W_{23}$.

If we start with a different twisting R we obtain the Pentagon equation.
The formulas that we use in the process are well-known, but very often only rigourous in the finite-dimensional case. In the general case, it turns out that the algebras $A A^{\prime} \bar{\otimes} A A^{\prime}$ and $A A^{\prime} \bar{\otimes}\left(A A^{\prime} \bar{\otimes} A A^{\prime}\right)$ are well suited for these formulas.

We refer to [1] and [12] for the terminology and notations in Hopf algebra theory. We use e.g. the standard notations

$$
\begin{aligned}
& \Delta(a)=\sum_{(a)} a_{(1)} \otimes a_{(2)} \\
& \Delta^{(2)}(a)=(\Delta \otimes i) \Delta(a)=\sum_{(a)} a_{(1)} \otimes a_{(2)} \otimes a_{(3)}
\end{aligned}
$$

(with Δ for the comultiplication and l for the identity map). There seems to be no standard reference for Hopf *-algebras. So let us recall some of the definitions here (see e.g. [14]). A Hopf *-algebra is a Hopf algebra A over \mathbb{C} with an involution such that the comultiplication Δ and the counit ε are *-homomorphisms and such that $S\left(S(a)^{*}\right)^{*}=a$ for all $a \in A$, where S is the antipode. The dual space A^{\prime} is made into a ${ }^{*}$-algebra by $f^{*}(a)=f\left(S(a)^{*}\right)^{-}$, when $a \in A$ and $f \in A^{\prime}$. In the finite-dimensional case, A^{\prime} is again a Hopf *-algebra.

Acknowledgements

We like to thank the referee for pointing out to us various articles treating similar twisted tensor product algebras.

2. The twisted tensor product of *-algebras

Let A and B be two algebras and suppose that we have given a linear map $R: B \otimes A \rightarrow A \otimes B$ such that

$$
\begin{align*}
& R(m \otimes l)=(\imath \otimes m)(R \otimes l)(\imath \otimes R) \\
& R(\imath \otimes m)=(m \otimes \imath)(\imath \otimes R)(R \otimes \imath) . \tag{1}
\end{align*}
$$

Here m denotes the product in A as well as B, considered as a linear map $m: A \otimes A \rightarrow A$ and similarly for B. As before i denotes the identity map. Then we will construct an algebra $A \otimes_{R} B$. As a vector space $A \otimes_{R} B$ is $A \otimes B$. The product in $A \otimes_{R} B$ however is not the usual product on $A \otimes B$ but is some twisted product determined by R.
2.1 DEFINITION. We define the product in $A \otimes_{R} B$ by

$$
x y=(m \otimes m)(\imath \otimes R \otimes \imath)(x \otimes y)
$$

for $x, y \in A \otimes_{R} B$.
The conditions (1) on R are necessary for the associativity of the product. They also appear elsewhere in literature (see e.g. [10] and [11]). They are quite natural and generalise the notions of action, coaction and their compatibility in the constructions of Takeuchi and Majid.

If we denote $a \otimes b$ by $a b$ and $R(b \otimes a)$ by $b a$ whenever $a \in A$ and $b \in B$, we can rewrite the conditions on R and the above product in a compact way. The first condition on R becomes

$$
\left(b b^{\prime}\right) a=b\left(b^{\prime} a\right)
$$

provided we define $b\left(a_{1} b_{1}\right)=\left(b a_{1}\right) b_{1}$ and $\left(a_{2} b_{2}\right) b_{1}=a_{2}\left(b_{2} b_{1}\right)$. The second condition on R becomes

$$
b\left(a a^{\prime}\right)=(b a) a^{\prime}
$$

if we let $\left(a_{1} b_{1}\right) a^{\prime}=a_{1}\left(b_{1} a^{\prime}\right)$ and $a_{1}\left(a_{2} b_{2}\right)=\left(a_{1} a_{2}\right) b_{2}$. It is obvious that all these definitions are compatible with the linear structure of $A \otimes B$ and $B \otimes A$. Moreover it is easy to show that the obvious associativity rules are valid and that indeed the conditions on R take care of the missing ones.

The product is given by $(a b)\left(a^{\prime} b^{\prime}\right)=a\left(b a^{\prime}\right) b^{\prime}$, when $a\left(a_{1} b_{1}\right) b^{\prime}$ is defined as $\left(a a_{1}\right)\left(b_{1} b^{\prime}\right)$. Also this product is associative but this is not completely obvious. We will prove it in the next proposition.

We will also show that, if A and B are algebras with an identity 1 , and if R satisfies certain extra conditions, the maps $a \rightarrow a \cdot 1$ and $b \rightarrow 1 \cdot b$ are injective homomorphisms of A and B in $A \otimes_{R} B$. If we identify a and b with their image we get precisely that $a b$ is the product of a with b and that $b a$ is the product of b with a. This should explain why we work with this compact notation and why this compact notation works. If no confusion about the mapping R is
possible we will denote $A \otimes_{R} B$ by $A B$.

2.2 PROPOSITION. The product in $A B$ is associative.

Proof. First notice that the associativity of the multiplication in A and B yields that $(c b) b^{\prime}=c\left(b b^{\prime}\right)$ and $a\left(a^{\prime} c\right)=\left(a a^{\prime}\right) c$ for all $a, a^{\prime} \in A, b, b^{\prime} \in B$ and $c \in A B$.

Now let $a, a^{\prime}, a^{\prime \prime} \in A$ and $b, b^{\prime}, b^{\prime \prime} \in B$. Then $\left((a b)\left(a^{\prime} b^{\prime}\right)\right)\left(a^{\prime \prime} b^{\prime \prime}\right)=\left(a\left(b a^{\prime}\right) b^{\prime}\right)\left(a^{\prime \prime} b^{\prime \prime}\right)$. We have that

$$
\begin{aligned}
\left(a\left(a_{1} b_{1}\right) b^{\prime}\right)\left(a^{\prime \prime} b^{\prime \prime}\right) & =\left(\left(a a_{1}\right)\left(b_{1} b^{\prime}\right)\right)\left(a^{\prime \prime} b^{\prime \prime}\right) \\
& =\left(a a_{1}\right)\left(\left(b_{1} b^{\prime}\right) a^{\prime \prime}\right) b^{\prime \prime} \\
& =\left(a a_{1}\right)\left(b_{1}\left(b^{\prime} a^{\prime \prime}\right)\right) b^{\prime \prime}
\end{aligned}
$$

for all $a_{1} \in A$ and $b_{1} \in B$ and since

$$
\begin{aligned}
\left(a a_{1}\right)\left(b_{1}\left(a_{2} b_{2}\right)\right) b^{\prime \prime} & =\left(a a_{1}\right)\left(\left(b_{1} a_{2}\right) b_{2}\right) b^{\prime \prime} \\
& =\left(a a_{1}\right)\left(b_{1} a_{2}\right)\left(b_{2} b^{\prime \prime}\right) \\
& =\left(\left(a a_{1}\right) b_{1}\right)\left(a_{2}\left(b_{2} b^{\prime \prime}\right)\right. \\
& =\left(a\left(a_{1} b_{1}\right)\right)\left(\left(a_{2} b_{2}\right) b^{\prime \prime}\right)
\end{aligned}
$$

for all $a_{2} \in A$ and $b_{2} \in B$, we get

$$
\left(a\left(a_{1} b_{1}\right) b^{\prime}\right)\left(a^{\prime \prime} b^{\prime \prime}\right)=\left(a\left(a_{1} b_{1}\right)\right)\left(\left(b^{\prime} a^{\prime \prime}\right) b^{\prime \prime}\right)
$$

and so

$$
\left((a b)\left(a^{\prime} b^{\prime}\right)\right)\left(a^{\prime \prime} b^{\prime \prime}\right)=\left(a\left(b a^{\prime}\right)\right)\left(\left(b^{\prime} a^{\prime \prime}\right) b^{\prime \prime}\right)
$$

A similar argument gives us that

$$
(a b)\left(\left(a^{\prime} b^{\prime}\right)\left(a^{\prime \prime} b^{\prime \prime}\right)\right)=\left(a\left(b a^{\prime}\right)\right)\left(\left(b^{\prime} a^{\prime \prime}\right) b^{\prime \prime}\right)
$$

If A and B have an identity 1 and if R satisfies some natural conditions we can embed A and B in $A B$ in such a way that $a b$ is indeed the product of a and b :

2.3 PROPOSITION. If R satisfies

$$
\begin{equation*}
R(1 \otimes a)=a \otimes 1 \quad \text { and } \quad R(b \otimes 1)=1 \otimes b, \quad \forall a \in A, b \in B \tag{2}
\end{equation*}
$$

then the mappings

$$
\begin{aligned}
& i_{A}: A \rightarrow A B: a \mapsto a .1 \\
& i_{B}: B \rightarrow A B: b \mapsto 1 . b
\end{aligned}
$$

are homomorphisms.
The formulas (2) can be rewritten in $A B$ as $1 \cdot a=a \cdot 1$ and $b \cdot 1=1 \cdot b$ for $a \in A$ and $b \in B$. Moreover we have that $\forall a, a^{\prime} \in A, \forall b, b^{\prime} \in B$:

$$
\begin{array}{ll}
i_{A}(a)\left(a^{\prime} b\right)=a\left(a^{\prime} b\right) ; & (a b) i_{B}\left(b^{\prime}\right)=(a b) b^{\prime} \\
i_{B}(b)\left(a b^{\prime}\right)=b\left(a b^{\prime}\right) ; & (a b) i_{A}\left(a^{\prime}\right)=(a b) a^{\prime}
\end{array}
$$

Hence we can identify $i_{A}(a)$ with a and $i_{B}(b)$ with b.
Now let A and B be *-algebras. In view of the previous remarks, in the case were A and B have identities, it would be natural to define an involution on $A B$ by $(a b)^{*}=b^{*} a^{*}$. This can only be an involution if $\left(b^{*} a^{*}\right)^{*}=a b$. It turns out that this condition on R is sufficient to make $A B$ into an involutive algebra. Remark that this condition in tensor product form is written as $(R(J \otimes J) \sigma)^{2}=\imath \otimes \imath$ if we denote the involution on A and B by J and the flip on $A \otimes B$ by σ.

2.4 PROPOSITION. If R satisfies

$$
\begin{equation*}
R(J \otimes J) \sigma R(J \otimes J) \sigma=\imath \otimes \imath \tag{3}
\end{equation*}
$$

then $R(J \otimes J) \sigma$ is an involution on $A \otimes_{R} B$.
Proof. We still have to check that $\left((a b)\left(a^{\prime} b^{\prime}\right)\right)^{*}=\left(a^{\prime} b^{\prime}\right) *(a b)^{*}$ for all $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$. So let $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$. Then we have $\left((a b)\left(a^{\prime} b^{\prime}\right)\right)^{*}=$ $\left(a\left(b a^{\prime}\right) b^{\prime}\right)^{*}$. Now for $a_{1} \in A, b_{1} \in B$, we have that

$$
\begin{aligned}
\left(a\left(a_{1} b_{1}\right) b^{\prime}\right)^{*} & =\left(\left(a a_{1}\right)\left(b_{1} b^{\prime}\right)\right)^{*} \\
& =\left(b_{1} b^{\prime}\right)^{*}\left(a a_{1}\right)^{*} \\
& =\left(b^{\prime *} b_{1}^{*}\right)\left(a_{1}^{*} a^{*}\right) .
\end{aligned}
$$

One can easily see that this last expression is equal to $b^{*}\left(\left(b_{1}^{*} a_{1}^{*}\right) a^{*}\right)=$ $b^{\prime *}\left(\left(a_{1} b_{1}\right)^{*} a^{*}\right)$. So $\left((a b)\left(a^{\prime} b^{\prime}\right)\right)^{*}=b^{*}\left(\left(b a^{\prime}\right)^{*} a^{*}\right)=b^{\prime *}\left(\left(a^{*} b^{*}\right) a^{*}\right)$.

On the other hand we get $\left(a^{\prime} b^{\prime}\right)^{*}(a b)^{*}=\left(b^{*} a^{*}\right)\left(b^{*} a^{*}\right)$, and one can verify that this is also equal to $b^{\prime *}\left(\left(a^{* *} b^{*}\right) a^{*}\right)$.

One can also verify that for ${ }^{*}$-algebras A and B with identities, and for R satisfying the above conditions, the embeddings i_{A} and i_{B} are ${ }^{*}$-homomorphisms.

We now give some examples.
2.5 EXAMPLES. (i) Let A and B be *-algebras. If we take the flip σ for R, we can check that σ satisfies the conditions and $A B$ becomes the usual tensor product $A \otimes B$ of the two *-algebras.
(ii) Let A be a ${ }^{*}$-algebra, and B the group algebra of a finite group G. If we have an action α of G on A, we can define $R: B \otimes A \rightarrow A \otimes B$ by $R\left(\Sigma_{s} s \otimes a_{s}\right)=\Sigma_{s} \alpha_{s}\left(a_{s}\right) \otimes s$. We show that R satisfies the conditions. If $s, s^{\prime} \in G$ and $a \in A$,

$$
R(m \otimes \imath)\left(s \otimes s^{\prime} \otimes a\right)=R\left(s s^{\prime} \otimes a\right)=\alpha_{s s^{\prime}}(a) \otimes s s^{\prime}
$$

while on the other hand

$$
\begin{aligned}
(\imath \otimes m)(R \otimes \imath)(\imath \otimes R)\left(s \otimes s^{\prime} \otimes a\right) & =(\imath \otimes m)(R \otimes \imath)\left(s \otimes \alpha_{s^{\prime}}(a) \otimes s^{\prime}\right) \\
& =(\imath \otimes m)\left(\alpha_{s}\left(\alpha_{s^{\prime}}(a)\right) \otimes s \otimes s^{\prime}\right) \\
& =\alpha_{s s^{\prime}}(a) \otimes s s^{\prime} .
\end{aligned}
$$

Similarly, if $a, a^{\prime} \in A$ and $s \in G$,

$$
R(l \otimes m)\left(s \otimes a \otimes a^{\prime}\right)=R\left(s \otimes a a^{\prime}\right)=\alpha_{s}\left(a a^{\prime}\right) \otimes s
$$

and

$$
\begin{aligned}
(m \otimes \imath)(\imath \otimes R)(R \otimes \imath)\left(s \otimes a \otimes a^{\prime}\right) & =(m \otimes \imath)(\imath \otimes R)\left(\alpha_{s}(a) \otimes s \otimes a^{\prime}\right) \\
& =(m \otimes \imath)\left(\alpha_{s}(a) \otimes \alpha_{s}\left(a^{\prime}\right) \otimes s\right) \\
& =\alpha_{s}(a) \alpha_{s}\left(a^{\prime}\right) \otimes s,
\end{aligned}
$$

so that condition (1) is fulfilled. Remark that the first condition of (1) follows from the fact that α_{s} is an algebra homomorphism and the second follows from the fact that α is a group action.

One can see that condition (2) is fulfilled if A has a unit. Also condition (3)
is satisfied. Since $(R(J \otimes J) \sigma)(a \otimes s)=R\left(s^{-1} \otimes a^{*}\right)=\alpha_{s^{-1}}\left(a^{*}\right) \otimes s^{-1}$, we have that

$$
\begin{aligned}
(R(J \otimes J) \sigma R(J \otimes J) \sigma)(a \otimes s) & =(R(J \otimes J) \sigma)\left(\alpha_{s}-1\right. \\
& \left.\left(a^{*}\right) \otimes s^{-1}\right) \\
& =\alpha_{s}\left(\alpha_{s^{-1}}\left(a^{*}\right)^{*}\right) \otimes s \\
& =\alpha_{s}\left(\alpha_{s^{-1}}(a)\right) \otimes s \\
& =a \otimes s .
\end{aligned}
$$

In this case, $A B$ is the crossed product of A by the action α of G.
(iii) A combination of the first two examples gives us the following. Let A_{1} and A_{2} be ${ }^{*}$-algebras, and let B_{1} and B_{2} be the group algebras of finite groups G_{1} and G_{2} respectively. Let α be an action of G_{1} on A_{1} and β be an action of G_{2} on A_{2}. Let $R_{1}: B_{1} \otimes A_{1} \rightarrow A_{1} \otimes B_{1}$ be as in example (ii) but let $R_{2}: A_{2} \otimes B_{2} \rightarrow \mathrm{~B}_{2} \otimes A_{2}$ be defined by $R_{2}(a \otimes s)=s \otimes \beta_{s}(a)$. Put $A=A_{1} \otimes B_{2}$ and $B=B_{1} \otimes A_{2}$, and define $R: B \otimes A \rightarrow A \otimes B$ as $R=\sigma_{23}\left(R_{1} \otimes R_{2}\right) \sigma_{23}$, where $\sigma_{23}=\imath \otimes \sigma \otimes \iota$. One can check that R satisfies conditions (1) and (3), and hence we get a new algebra $A B$.

We finish this section by formulating some properties of this twisted tensor product.
2.6 PROPOSITION. Let A, B be *-algebras and $R: B \otimes A \rightarrow A \otimes B$ satisfying conditions (1), (2), (3). Let A_{1} and B_{1} also be *-algebras.
(i) Suppose $R_{1}: B_{1} \otimes A_{1} \rightarrow A_{1} \otimes B_{1}$ also satisfies conditions (1), (2), (3). If $\varphi: A \rightarrow A_{1}$ and $\psi: B \rightarrow B_{1}$ are *-homomorphisms satisfying $R_{1} \circ(\psi \otimes \varphi)=$ $(\varphi \otimes \psi) \circ R$, then $\varphi \otimes \psi: A \otimes_{R} B \rightarrow A_{1} \otimes_{R_{1}} B_{1}$ is $a{ }^{*}$-homomorphism of the twisted tensor products.
(ii) If the mappings $\varphi: A \rightarrow A_{1}$ and $\psi: B \rightarrow B_{1}$ are bijective *-homomorphisms, then $R_{1}:=(\varphi \otimes \psi) \circ R \circ\left(\psi^{-1} \otimes \varphi^{-1}\right)$ satisfies conditions (1), (2), (3), and hence defines a twisted tensor product $A_{1} \otimes_{R_{1}} B_{1}$, isomorphic with $A \otimes_{R} B$.

The proof of these properties is straightforward. It is also easy to check that, if A_{1}, B_{1} are subalgebras of A, B respectively such that $R\left(B_{1} \otimes A_{1}\right) \subseteq A_{1} \otimes B_{1}$, then $A_{1} B_{1}$ is a subalgebra of $A B$.

3. The algebras $A A^{\prime}$ and $A A^{\prime} \otimes A A^{\prime}$

Consider a Hopf *-algebra A. For a *-algebra D we will introduce a *-algebra structure on $L(A, D)$, the vectorspace of linear D-valued mappings on A. Then we will define two mappings $R_{1}, R_{2}: L(A, D) \otimes A \rightarrow A \otimes L(A, D)$ satisfying the conditions of section 2 , and hence we will get two twisted tensor products $A \otimes_{R_{1}} L(A, D)$ and $A \otimes_{R_{2}} L(A, D)$.

The proof of the following proposition is straightforward (see also [1]).
3.1 PROPOSITION. Define multiplication and involution on $L(A, D)$ by

$$
\begin{aligned}
& f_{1} \cdot f_{2}=m\left(f_{1} \otimes f_{2}\right) \Delta \\
& f^{*}(a)=\left(f\left(S(a)^{*}\right)\right)^{*}
\end{aligned}
$$

where $f, f_{1}, f_{2} \in L(A, D)$ and $a \in A$ and where m denotes multiplication on D. Then $L(A, D)$ is a ${ }^{*}$-algebra.

Remark that we get the algebraic dual A^{\prime} of A with its usual algebra structure if we choose the complex field \mathbb{C} as algebra D . It will turn out that the algebraic tensor product $A^{\prime} \otimes D$ is a *-subalgebra of $L(A, D)$.

We now want to define the two mappings $R_{1}, R_{2}: L(A, D) \otimes A \rightarrow A \otimes L(A, D)$. For notational convenience we will consider elements of $A \otimes L(A, D)$ sometimes as linear maps from A to $A \otimes D$. So, if $a \in A$ and $f \in L(A, D)$ then $(a \otimes f)(x)=a \otimes f(x)$ for all $x \in A$. Similarly, elements of $A \otimes L(A, D) \otimes$ $L(A, D)$ will be considered as functions of two variables on A with values in $A \otimes D \otimes D$ and other tensor products combining A and $L(A, D)$ will be treated in an analogous way. This will make it much easier to write down the proofs in what follows.
3.2 DEFINITION. Let A, D and $L(A, D)$ be as above. Define two linear maps $R_{1}, R_{2}: L(A, D) \otimes A \rightarrow A \otimes L(A, D)$ by

$$
\begin{aligned}
& \left(R_{1}(f \otimes a)\right)(x)=\sum_{(a)} a_{(1)} \otimes f\left(a_{(2)} x\right) \\
& \left(R_{2}(f \otimes a)\right)(x)=\sum_{(a)} a_{(2)} \otimes f\left(a_{(3)} x S^{-1}\left(a_{(1)}\right)\right)
\end{aligned}
$$

It is easy to see that these linear maps are well-defined.
Here we recognise the formulas in [7, page 36] and [13, page 846].
We verify that these mappings satisfy the conditions of section 2.
3.3 PROPOSITION. For $R=R_{1}, R_{2}$ we have that
(i) $R(m \otimes \imath)=(\imath \otimes m)(R \otimes \imath)(\imath \otimes R)$
(ii) $R(\imath \otimes m)=(m \otimes l)(l \otimes R)(R \otimes l)$
(iii) $R(J \otimes J) \sigma R(J \otimes J) \sigma=\imath \otimes i$.

Proof. We first prove the three relations for R_{1}.
(i) Let $f, g \in L(A, D)$ and $a, x, y \in A$. Then
$\left(\left(l \otimes R_{1}\right)(f \otimes g \otimes a)\right)(x, y)=\sum_{(a)} f(x) \otimes a_{(1)} \otimes g\left(a_{(2)} y\right)$.

So

$$
\left(\left(R_{1} \otimes \imath\right)\left(\imath \otimes R_{1}\right)(f \otimes g \otimes a)\right)(x, y)=\sum_{(a)} a_{(1)} \otimes f\left(a_{(2)} x\right) \otimes g\left(a_{(3)} y\right)
$$

Therefore, using the formula for the multiplication in $L(A, D)$, we get

$$
\begin{aligned}
\left((\imath \otimes m)\left(R_{1} \otimes \imath\right)\left(\iota \otimes R_{1}\right)(f \otimes g \otimes a)\right)(x) & =\sum_{(a)(x)} a_{(1)} \otimes f\left(a_{(2)} x_{(1)}\right) g\left(a_{(3)} x_{(2)}\right) \\
& =\sum_{(a)} a_{(1)} \otimes(f g)\left(a_{(2)} x\right) \\
& =\left(R_{1}(f g \otimes a)\right)(x) \\
& =\left(R_{1}(m \otimes \imath)(f \otimes g \otimes a)\right)(x)
\end{aligned}
$$

This proves the first relation.
(ii) Let $f \in L(A, D)$ and $a, b, x \in A$. Then

$$
\left(\left(R_{1} \otimes l\right)(f \otimes a \otimes b)\right)(x)=\sum_{(a)} a_{(1)} \otimes f\left(a_{(2)} x\right) \otimes b
$$

So

$$
\left(\left(\imath \otimes R_{1}\right)\left(R_{1} \otimes \imath\right)(f \otimes a \otimes b)\right)(x)=\sum_{(a)(b)} a_{(1)} \otimes b_{(1)} \otimes f\left(a_{(2)} b_{(2)} x\right)
$$

and
$\left((m \otimes \imath)\left(\imath \otimes R_{1}\right)\left(R_{1} \otimes \imath\right)(f \otimes a \otimes b)\right)(x)=\sum_{(a)(b)} a_{(1)} b_{(1)} \otimes f\left(a_{(2)} b_{(2)} x\right)$

$$
\begin{aligned}
& =\sum_{(a b)}(a b)_{(1)} \otimes f\left((a b)_{(2)} x\right) \\
& =\left(R_{1}(f \otimes a b)\right)(x) \\
& =\left(R_{1}(\imath \otimes m)(f \otimes a \otimes b)\right)(x) .
\end{aligned}
$$

This proves the second relation.
(iii) Let $f \in L(A, D)$ and $a, x \in A$. Then

$$
\begin{aligned}
\left(R_{1}(J \otimes J) \sigma(a \otimes f)\right)(x) & =\left(R_{1}\left(f^{*} \otimes a^{*}\right)\right)(x) \\
& =\sum_{(a)} a_{(1)}^{*} \otimes f^{*}\left(a_{(2)}^{*} x\right) \\
& =\sum_{(a)} a_{(1)}^{*} \otimes f\left(S\left(a_{(2)}^{*}\right) * S(x)^{*}\right)^{*} \\
& =\sum_{(a) .} a_{(1)}^{*} \otimes f\left(S^{-1}\left(a_{(2)}\right) S(x)^{*}\right)^{*} .
\end{aligned}
$$

Now, if $b \in A$ and if g is defined in $L(A, D)$ by $g(x)=f\left(S^{-1}(b) S(x)^{*}\right)^{*}$, then $g^{*}(x)=f\left(S^{-1}(b) x\right)$. So, if we apply $R_{1}(J \otimes J) \sigma$ once more, we obtain

$$
\left(R_{1}(J \otimes J) \sigma R_{1}(J \otimes J) \sigma(a \otimes f)\right)(x)=\sum_{(a)} a_{(1)} \otimes f\left(S^{-1}\left(a_{(3)}\right) a_{(2)} x\right)
$$

But

$$
\begin{aligned}
\sum_{(a)} S^{-1}\left(a_{(2)}\right) a_{(1)} & =\left(m\left(S^{-1} \otimes l\right) \sigma \Delta\right)(a) \\
& =\left(m(\imath \otimes S) \Delta S^{-1}\right)(a) \\
& =\varepsilon\left(S^{-1}(a)\right) 1=\varepsilon(a) 1 .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left(R_{1}(J \otimes J) \sigma R_{1}(J \otimes J) \sigma(a \otimes f)\right)(x) & =\sum_{(a)} a_{1} \otimes f\left(\varepsilon\left(a_{(2)}\right) x\right) \\
& =\sum_{(a)} a_{1} \varepsilon\left(a_{(2)}\right) \otimes f(x) \\
& =a \otimes f(x) \\
& =(a \otimes f)(x) .
\end{aligned}
$$

This proves the third equality.
Now we prove the relations for R_{2}.
(i) Let $f, g \in L(A, D)$ and $a, x, y \in A$. Then

$$
\left(\left(\imath \otimes R_{2}\right)(f \otimes g \otimes a)\right)(x, y)=\sum_{(a)} f(x) \otimes a_{(2)} \otimes g\left(a_{(3)} y S^{-1}\left(a_{(1)}\right)\right) .
$$

So
$\left(\left(R_{2} \otimes l\right)\left(l \otimes R_{2}\right)(f \otimes g \otimes a)\right)(x, y)=\sum_{(a)} a_{(3)} \otimes f\left(a_{(4)} x S^{-1}\left(a_{(2)}\right)\right) \otimes g\left(a_{(5)} y S^{-1}\left(a_{(1)}\right)\right)$.
Using the formula for the multiplication in $L(A, D)$, we get

$$
\begin{aligned}
((l \otimes & \left.m)\left(R_{2} \otimes \imath\right)\left(l \otimes R_{2}\right)(f \otimes g \otimes a)\right)(x) \\
& =\sum_{(a)(x)} a_{(3)} \otimes f\left(a_{(4)} x_{(1)} S^{-1}\left(a_{(2)}\right)\right) g\left(a_{5)} x_{(2)} S^{-1}\left(a_{(1)}\right)\right) \\
& =\sum_{(a)} a_{(2)} \otimes(f g)\left(a_{(3)} x S^{-1}\left(a_{(1)}\right)\right) \\
& \left.=R_{2}(m \otimes \imath)(f \otimes g \otimes a)\right)(x) .
\end{aligned}
$$

This proves the first relation.
(ii) Let $f \in L(A, D)$ and $a, b, x \in A$. Then
$\left(\left(R_{2} \otimes \imath\right)(f \otimes a \otimes b)\right)(x)=\sum_{(a)} a_{(2)} \otimes f\left(a_{(3)} x S^{-1}\left(a_{(1)}\right)\right) \otimes b$.
So
$\left(\left(\iota \otimes R_{2}\right)\left(R_{2} \otimes \imath\right)(f \otimes a \otimes b)\right)(x)=\sum_{(a)(b)} a_{(2)} \otimes b_{(2)} \otimes f\left(a_{(3)} b_{(3)} x S^{-1}\left(b_{(1)}\right) S^{-1}\left(a_{(1)}\right)\right)$,
and

$$
\begin{aligned}
\left((m \otimes l)\left(\imath \otimes R_{2}\right)\left(R_{2} \otimes l\right)(f \otimes a \otimes b)\right)(x) & =\sum_{(a b)}(a b)_{(2)} \otimes f\left((a b)_{(3)} x S^{-1}\left((a b)_{(1)}\right)\right) \\
& =\left(R_{2}(\imath \otimes m)(f \otimes a \otimes b)\right)(x)
\end{aligned}
$$

This proves the second relation.
(iii) Let $f \in L(A, D)$ and $a, x \in A$. Then

$$
\begin{aligned}
\left(R_{2}(J \otimes J) \sigma(a \otimes f)\right)(x) & =\sum_{(a)} a_{(2)}^{*} \otimes f^{*}\left(a_{(3)}^{*} x S^{-1}\left(a_{(1)}^{*}\right)\right) \\
& =\sum_{(a)} a_{(2)}^{*} \otimes f\left(S\left(a_{(3)}^{*}\right)^{*} S(x)^{*} a_{(1)}\right)^{*}
\end{aligned}
$$

Now if $b, c \in A$, and if g is defined in $L(A, D)$ by $g(x)=f\left(S^{-1}(b) S(x)^{*} c\right)^{*}$, then $g^{*}(x)=f\left(S^{-1}(b) x c\right)$. So, applying $R_{2}(J \otimes J) \sigma$ once more gives

$$
\begin{aligned}
\left(R_{2}(J \otimes J) \sigma R_{2}(J \otimes J) \sigma(a \otimes f)\right)(x) & =\sum_{(a)} a_{(3)} \otimes f\left(S^{-1}\left(a_{(5)}\right) a_{(4)} x S^{-1}\left(a_{(2)}\right) a_{(1)}\right) \\
& =\sum_{(a)} a_{(2)} \otimes f\left(\varepsilon\left(a_{(3)}\right) x \varepsilon\left(a_{(1)}\right)\right) \\
& =a \otimes f(x) \\
& =(a \otimes f)(x)
\end{aligned}
$$

This proves the third equality.
If A and D have a unit, one can easily see that R_{1} and R_{2} also satisfy the formulas $R(1 \otimes a)=a \otimes 1$ and $R(f \otimes 1)=1 \otimes f$.

By choosing \mathbb{C} for D, we get two algebras $A \otimes_{R_{1}} A^{\prime}$ and $A \otimes_{R_{2}} A^{\prime}$, which we will both denote by $A A^{\prime}$ when no confusion is possible.

For any D we can embed $A^{\prime} \otimes D$ in $L(A, D)$ by

$$
(i(f \otimes d))(a)=f(a) d
$$

whenever $a \in A, d \in D$ and $f \in A^{\prime}$. This embedding i is a *-homomorphism. In turn i induces an embedding $j=\imath \otimes i: A \otimes A^{\prime} \otimes D \rightarrow A \otimes L(A, D)$. This is also a *-homomorphism from $A A^{\prime} \otimes D$ to $A L(A, D)$.

In the finite-dimensional case these embeddings are also surjective. This is no longer true in the infinite-dimensional case. However, then it is possible to find a suitable vector space topology on the larger space such that the images are dense. We don't want to elaborate further on this, but use this idea as a motivation to denote $L(A, D)$ by $A^{\prime} \bar{\otimes} D$ and similarly $A L(A, D)$ by $A A^{\prime} \bar{\otimes} D$. If we want to specify the R, we will also use $A A^{\prime} \bar{\otimes}_{R} D$ here as before. It is easily seen that also $A^{\prime} \bar{\otimes} D$ is a subalgebra of $A A^{\prime} \bar{\otimes} D$ by the natural embedding $f \mapsto 1$.

In the future we will omit i and j in our notations and we will consider $A^{\prime} \otimes D$ as a subalgebra of $A^{\prime} \bar{\otimes} D$ and $A A^{\prime} \otimes D$ as a subalgebra of $A A^{\prime} \bar{\otimes} D$.

Taking $A A^{\prime}$ for the algebra D gives us an algebra $A A^{\prime} \otimes A A^{\prime}$. Applying the same construction to this algebra, we get an algebra $A A^{\prime} \bar{\otimes}\left(A A^{\prime} \bar{\otimes} A A^{\prime}\right)$. This algebra contains the algebra $A A^{\prime} \bar{\otimes} A A^{\prime}$ in three different ways. Indeed, we have three embeddings i_{12}, i_{13}, i_{23} of $A A^{\prime} \bar{\otimes} A A^{\prime}$ into $A A^{\prime} \bar{\otimes}\left(A A^{\prime} \bar{\otimes} A A^{\prime}\right)$, by extending the three natural embeddings of $A A^{\prime} \otimes A A^{\prime}$ into $A A^{\prime} \otimes A A^{\prime} \otimes A A^{\prime}$.

Consider for example the natural embedding $A A^{\prime} \otimes A A^{\prime} \rightarrow A A^{\prime} \otimes A A^{\prime} \otimes 1$. The algebra $A A^{\prime} \otimes A A^{\prime}$ is a subalgebra of $A A^{\prime} \otimes A A^{\prime}$ and $A A^{\prime} \otimes A A^{\prime} \otimes 1$ is a subalgebra of $A A^{\prime} \bar{\otimes}\left(A A^{\prime} \bar{\otimes} A A^{\prime}\right)$. We define i_{12} as the mapping $A A^{\prime} \bar{\otimes} A A^{\prime}$ $\rightarrow A A^{\prime} \bar{\otimes}\left(A A^{\prime} \bar{\otimes} A A^{\prime}\right)$ that extends the natural embedding of $A A^{\prime} \otimes A A^{\prime}$ into $A A^{\prime} \otimes A A^{\prime} \otimes 1$. The two other mappings are given in an analogous way. The exact definition is as follows:

$$
\begin{aligned}
& i_{1}: A A^{\prime} \rightarrow A A^{\prime} \bar{\otimes} A A^{\prime}: a b \mapsto j(a b \otimes 1) \\
& i_{2}: A A^{\prime} \rightarrow A A^{\prime} \bar{\otimes} A A^{\prime}: a b \mapsto j(1 \otimes a b) \\
& i_{12}: A A^{\prime} \bar{\otimes} A A^{\prime} \rightarrow A A^{\prime} \bar{\otimes}\left(A A^{\prime} \bar{\otimes} A A^{\prime}\right): a f \mapsto a\left(i_{1} \circ f\right) \\
& i_{13}: A A^{\prime} \bar{\otimes} A A^{\prime} \rightarrow A A^{\prime} \bar{\otimes}\left(A A^{\prime} \bar{\otimes} A A^{\prime}\right): a f \mapsto a\left(i_{2} \circ f\right) \\
& i_{23}: A A^{\prime} \bar{\otimes} A A^{\prime} \rightarrow A A^{\prime} \bar{\otimes}\left(A A^{\prime} \bar{\otimes} A A^{\prime}\right): a f \mapsto j(1 \otimes a f) .
\end{aligned}
$$

These mappings are ${ }^{*}$-homomorphisms. Indeed, clearly i_{1}, i_{2} and i_{23} are *-homomorphisms, since j is one. The mappings i_{12}, i_{13} can also be checked with straightforward techniques. The injectivity of the mapping i_{12}, i_{13} and i_{23} is clear, and so we really have embeddings of $A A^{\prime} \bar{\otimes} A A^{\prime}$ in $A A^{\prime} \bar{\otimes}\left(A A^{\prime} \bar{\otimes} A A^{\prime}\right)$.

4. The formulas $\Delta(a)=W(a \otimes 1) W^{*}$ and $\Delta(a)=W \Delta^{\prime}(a) W^{*}$ in $A A^{\prime} \bar{\otimes} A A^{\prime}$

Again, let A be a Hopf *-algebra and let

$$
A A^{\prime} \bar{\otimes}_{R} A A^{\prime}=A L\left(A, A A^{\prime}\right)=A \otimes_{R} L\left(A, A A^{\prime}\right)
$$

where $R=R_{1}$ or R_{2} as defined in the previous section, and is again omitted in the notation when no confusion is possible. We will consider elements in $A A^{\prime} \bar{\otimes} A A^{\prime}$ as functions from A to $A \otimes A A^{\prime}$ as before.

In this section we will consider the subalgebras $A \otimes A$ and $A^{\prime} \bar{\otimes} A=L(A, A)$ of $A A^{\prime} \bar{\otimes} A A^{\prime}$. We have that

$$
\begin{aligned}
& (a \otimes b)(x)=a \otimes \varepsilon(x) b \\
& f(x)=1 \otimes f(x)
\end{aligned}
$$

for $a, b \in A$ and $f \in L(A, A)$.
We first define W in $L(A, A)$.
4.1 DEFINITION. Let W be the identity map in $L(A, A)$.

Then $W^{*}(a)=W\left(S(a)^{*}\right)^{*}=S(a)$ when $a \in A$. Moreover

$$
\left(W^{*} W\right)(a)=\sum_{(a)} W^{*}\left(a_{(1)}\right) W\left(a_{(2)}\right)=\sum_{(a)} S\left(a_{(1)}\right) a_{(2)}=\varepsilon(a) 1
$$

So we get $W^{*} W=1$ in the algebra $L(A, A)$. Similarly $W W^{*}=1$, so that W is a unitary. When considered as an element in $A A^{\prime} \bar{\otimes} A A^{\prime}$, we get $W(x)=1 \otimes x$ for $x \in A$, and of course also here W is a unitary. Moreover we have the following formulas.
4.2 PROPOSITION. (i) In $A A^{\prime} \bar{\otimes}_{R_{1}} A A^{\prime}$ we have for all $a \in A$:

$$
W(a \otimes 1) W^{*}=\Delta(a)
$$

(ii) In $A A^{\prime} \bar{\otimes}_{R_{2}} A A^{\prime}$ we have for all $a \in A$:
$W^{*} \Delta(a) W=\Delta^{\prime}(a)$,
where $\Delta^{\prime}=\sigma \Delta$ is the opposite comultiplication.
Proof. In the two cases we have for $a, x \in A$, that

$$
(\Delta(a) W)(x)=\left(\sum_{(a)}\left(a_{(1)} \otimes a_{(2)}\right) W\right)(x)=\sum_{(a)} a_{(1)} \otimes a_{(2)} x .
$$

In case (i) we get

$$
\begin{aligned}
(W(a \otimes 1))(x) & =\left(R_{1}(W \otimes a)\right)(x) \\
& =\sum_{(a)} a_{(1)} \otimes W\left(a_{(2)} x\right) \\
& =\sum_{(a)} a_{(1)} \otimes a_{(2)} x,
\end{aligned}
$$

proving the first formula.
In case (ii) we get

$$
\begin{aligned}
(W \sigma \Delta(a))(x) & =\sum_{(a)}\left(W\left(a_{(2)} \otimes a_{(1)}\right)\right)(x) \\
& =\sum_{(a)}\left(W\left(a_{(2)} \otimes 1\right)\left(1 \otimes a_{(1)}\right)\right)(x) \\
& =\sum_{(a)}\left(W\left(a_{(2)} \otimes 1\right)\right)(x)\left(1 \otimes a_{(1)}\right) \\
& =\sum_{(a)} a_{(3)} \otimes W\left(a_{(4)} x S^{-1}\left(a_{(2)}\right)\right) a_{(1)} \\
& =\sum_{(a)} a_{(3)} \otimes a_{(4)} x S^{-1}\left(a_{(2)}\right) a_{(1)}
\end{aligned}
$$

We have seen before that $\sum_{(a)} S^{-1}\left(a_{(2)}\right) a_{(1)}=\varepsilon(a) 1$. So we get

$$
\begin{aligned}
(W \sigma \Delta(a))(x) & =\sum_{(a)} a_{(2)} \otimes a_{(3)} x \varepsilon\left(a_{(1)}\right) \\
& =\sum_{(a)} a_{(1)} \otimes a_{(2)} x
\end{aligned}
$$

This proves the second formula.
Remark that, essentially, these formulas determine the commutation rules R_{1} and R_{2} from $A^{\prime} A$ to $A A^{\prime}$.

We can consider these formulas in some examples.
4.3 EXAMPLE. Consider a finite group G, and let A be the group algebra of G. If we define $\Delta(s)=s \otimes s, S(s)=s^{-1}$ and $\varepsilon(s)=1$ for all $s \in G, A$ becomes a Hopf *-algebra. A^{\prime} is the algebra of linear functions on A, equipped with pointwise multiplication. The element $\sum_{s \in G} \delta_{s} \otimes s \in A^{\prime} \otimes A$, considered as a function in $L(A, A)$, is the identical function. So $W=\sum_{s \in G} \delta_{s} \otimes s$. We then have:
(i) In $A A^{\prime} \otimes_{R_{1}} A A^{\prime}$:

$$
\begin{aligned}
W(s \otimes 1) W^{*} & =\sum_{u}\left(\delta_{u} \otimes u\right)(s \otimes 1) \sum_{v}\left(\delta_{v} \otimes v^{-1}\right) \\
& =\sum_{u, v}(s \otimes 1)\left(\delta_{s-1 u} \otimes u\right)\left(\delta_{v} \otimes v^{-1}\right) \\
& =\sum_{u}(s \otimes 1)\left(\delta_{s-1 u} \otimes u\right)\left(\delta_{s-1 u} \otimes u^{-1} s\right) \\
& =\sum_{u}(s \otimes 1)\left(\delta_{s-1 u} \otimes s\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(s \otimes 1)\left(\sum_{u} \delta_{s-1 u} \otimes s\right) \\
& =(s \otimes 1)(1 \otimes s)=s \otimes s=\Delta(s)
\end{aligned}
$$

This gives proposition 4.2(i).
(ii) In $A A^{\prime} \bar{\otimes}_{R_{2}} A A^{\prime}$:

$$
\begin{aligned}
W \Delta^{\prime}(s) W^{*} & =\sum_{u}\left(\delta_{u} \otimes u\right)(s \otimes s) \sum_{v}\left(\delta_{v} \otimes v^{-1}\right) \\
& =\sum_{u, v}(s \otimes u)\left(\delta_{s-1 u s} \otimes s\right)\left(\delta_{v} \otimes v^{-1}\right) \\
& =\sum_{u}(s \otimes u)\left(\delta_{s-1 u s} \otimes s\right)\left(\delta_{s-1 u s} \otimes s^{-1} u^{-1} s\right) \\
& =\sum_{u}(s \otimes s)\left(\delta_{s^{-1} u s} \otimes 1\right)=(s \otimes s)=\Delta(s)
\end{aligned}
$$

This is proposition 4.2(ii).
4.4 EXAMPLE. Let A be the ${ }^{*}$-algebra with identity generated by a selfadjoint element h. One can define $\Delta: A \rightarrow A \otimes A$ by $\Delta(h)=h \otimes 1+1 \otimes h$, $\varepsilon: A \rightarrow \mathbb{C}$ by $\varepsilon(h)=0$, and $S: A \rightarrow A$ by $S(h)=-h$. It is easy to verify that A is a Hopf ${ }^{*}$-algebra. Let B be the ${ }^{*}$-algebra with identity generated by a self-adjoint element k, with the same Hopf *-algebra structure. Define, for a given $\lambda \in \mathbb{R}$, and for all $n, m \in \mathbb{N}:\left\langle h^{n}, k^{m}\right\rangle=\delta(n, m) n!(i \lambda)^{n}$, where δ is the Kronecker delta. This is a non-degenerate bilinear mapping $A \times B \rightarrow \mathbb{C}$, and since also $\left\langle\Delta\left(h^{n}\right), k^{p} \otimes k^{q}\right\rangle=\left\langle h^{n}, k^{p} k^{q}\right\rangle$ and $\left\langle h^{n},\left(k^{m}\right)^{*}\right\rangle=\left\langle S\left(h^{n}\right)^{*}, k^{m}\right\rangle^{-}$, we have that $\bar{B}=A^{\prime}$, when we consider A^{\prime} with the weak *-topology (see [14]).

For each element $a \in A$, the power series

$$
\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{1}{i \lambda}(k \otimes h)\right)^{n}(a)
$$

reduces to a finite sum, so we can say that the power series

$$
\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{1}{i \lambda}(k \otimes h)\right)^{n}
$$

converges in $L(A, A)$, and we denote it by $\exp \left(\frac{1}{i \lambda}(k \otimes h)\right)$.

Moreover, we have that

$$
\begin{aligned}
\exp \left(\frac{1}{i \lambda}(k \otimes h)\right)\left(h^{j}\right) & =\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{1}{(i \lambda)^{n}}\left(k^{n} \otimes h^{n}\right)\left(h^{j}\right)\right) \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{(i \lambda)^{n}} \delta(n, j) j!(i \lambda)^{j} h^{n} \\
& =h^{j} .
\end{aligned}
$$

Thus $\exp \left(\frac{1}{i \lambda}(k \otimes h)\right)$ is the element W.
(i) Since $R_{1}(k \otimes h)(x)=h \otimes k(x)+1 \otimes k(h x)$ for all x in A, we have that $R_{1}(k \otimes h)=h \otimes k+i \lambda(1 \otimes 1)$. So in $A \otimes_{R_{1}} B$ we have $[k, h]=i \lambda$. Hence in $A A^{\prime} \bar{\otimes}_{R_{1}} A A^{\prime}$ we get

$$
\begin{aligned}
W(h \otimes 1) W^{*} & =\exp \left(\frac{1}{i \lambda}(k \otimes h)\right)(h \otimes 1) \exp \left(-\frac{1}{i \lambda}(k \otimes h)\right) \\
& =h \otimes 1+\frac{1}{i \lambda}[k \otimes h, h \otimes 1] \\
& =h \otimes 1+1 \otimes h=\Delta(h) .
\end{aligned}
$$

This illustrates proposition 4.3(i).
(ii) Since $R_{2}(k \otimes h)(x)=1 \otimes k(-x h)+h \otimes k(x)+1 \otimes k(h x)$ for all x in A, we have that $R_{2}(k \otimes h)=h \otimes k$. Hence $A \otimes_{R_{2}} B$ is commutative, and in $A A^{\prime} \bar{\otimes}_{R_{2}} A A^{\prime}$ we get

$$
\begin{aligned}
W \Delta^{\prime}(h) W^{*} & =\exp \left(\frac{1}{i \lambda}(k \otimes h)\right)(h \otimes 1+1 \otimes h) \exp \left(-\frac{1}{i \lambda}(k \otimes h)\right) \\
& =(h \otimes 1+1 \otimes h) W W^{*} \\
& =h \otimes 1+1 \otimes h=\Delta(h) .
\end{aligned}
$$

5. The Pentagon and Yang-Baxter equation

The three embeddings i_{12}, i_{13} and i_{23} of $A A^{\prime} \bar{\otimes} A A^{\prime}$ in $A A^{\prime} \bar{\otimes}\left(A A^{\prime} \bar{\otimes} A A^{\prime}\right)$, described in section 3, give rise to the elements $W_{12}=i_{12}(W), W_{13}=i_{13}(W)$ and $W_{23}=i_{23}(W)$. In this section we will show that W satisfies the Pentagon equation in $A A^{\prime} \bar{\otimes}_{R_{1}}\left(A A^{\prime} \bar{\otimes}_{R_{1}} A A^{\prime}\right)$ and the Yang-Baxter equation in $A A^{\prime} \bar{\otimes}_{R_{2}}\left(A A^{\prime} \bar{\otimes}_{R_{2}} A A^{\prime}\right)$.

The ${ }^{*}$-homomorphism $\imath \otimes \Delta: A^{\prime} \otimes A \rightarrow A^{\prime} \otimes(A \otimes A)$ can be extended to a *-homomorphism $\imath \otimes \Delta: A^{\prime} \bar{\otimes} A \rightarrow A^{\prime} \bar{\otimes}(A \otimes A)$, mapping f to $\Delta \circ f$, and later on extended to a ${ }^{*}$-homomorphism $l \otimes \Delta: A A^{\prime} \bar{\otimes} A \rightarrow A A^{\prime} \bar{\otimes}\left(A A^{\prime} \bar{\otimes} A A^{\prime}\right)$. Then we have the following.
5.1 PROPOSITION. In $A A^{\prime} \bar{\otimes}\left(A A^{\prime} \bar{\otimes} A A^{\prime}\right)$ we have that $(\imath \otimes \Delta)(W)=W_{12} W_{13}$. Proof. All three elements $(l \otimes \Delta)(W), W_{12}$ and W_{13} are in fact in the subalgebra $A^{\prime} \bar{\otimes}(A \otimes A)=L(A, A \otimes A)$, and it is therefore sufficient to prove the equation in this subalgebra. For all $x \in A$ we have

$$
(1 \otimes \Delta)(W)(x)=\Delta(W(x))=\Delta(x)=\sum_{(x)} x_{(1)} \otimes x_{(2)}
$$

On the other hand

$$
\begin{aligned}
\left(W_{12} W_{13}\right)(x) & =\sum_{(x)} W_{12}\left(x_{(1)}\right) W_{13}\left(x_{(2)}\right) \\
& =\sum_{(x)}\left(x_{(1)} \otimes 1\right)\left(1 \otimes x_{(2)}\right) \\
& =\sum_{(x)} x_{(1)} \otimes x_{(2)} .
\end{aligned}
$$

We now come to the proof of the Pentagon equation.
5.2 THEOREM. In $A A^{\prime} \bar{\otimes}_{R_{1}}\left(A A^{\prime} \bar{\otimes}_{R_{1}} A A^{\prime}\right)$ we have $W_{12} W_{13} W_{23}=W_{23} W_{12}$. Proof. Because of proposition 5.1 it will be sufficient to prove

$$
W_{23} W_{12} W_{23}^{*}=(l \otimes \Delta)(W)
$$

We consider this equation in the subalgebra $A^{\prime} \bar{\otimes}\left(A A^{\prime} \bar{\otimes}_{R_{1}} A A^{\prime}\right)=$ $L\left(A, A A^{\prime} \bar{\otimes}_{R_{1}} A A^{\prime}\right)$. So let $a \in A$. Then, we have

$$
\begin{aligned}
& W_{12}(a)=a \otimes 1 \\
& W_{23}(a)=\varepsilon(a) W .
\end{aligned}
$$

So

$$
\begin{aligned}
\left(W_{23} W_{12} W_{23}^{*}\right)(a) & =\sum_{(a)} W_{23}\left(a_{(1)}\right) W_{12}\left(a_{(2)}\right) W_{23}^{*}\left(a_{(3)}\right) \\
& =\sum_{(a)} \varepsilon\left(a_{(1)}\right) W\left(a_{(2)} \otimes 1\right) \varepsilon\left(a_{(3)}\right) W^{*} \\
& =W(a \otimes 1) W^{*}=\Delta(a)
\end{aligned}
$$

Similarly we can prove the Yang-Baxter equation.
5.3 THEOREM. In $A A^{\prime} \bar{\otimes}_{R_{2}}\left(A A^{\prime} \bar{\otimes}_{R_{2}} A A^{\prime}\right)$ we have $W_{12} W_{13} W_{23}=W_{23} W_{13} W_{12}$.

Proof. In Proposition 5.1 we saw that here $(\imath \otimes \Delta)(W)=W_{12} W_{13}$. It is not hard to see that $\left(\imath \otimes \Delta^{\prime}\right)(W)=W_{13} W_{12}$. Therefore we must show that

$$
W_{23}\left(l \otimes \Delta^{\prime}\right)(W)=(l \otimes \Delta)(W) W_{23} .
$$

We can do this again in $A^{\prime} \bar{\otimes}\left(A A^{\prime} \bar{\otimes}_{R_{2}} A A^{\prime}\right)=L\left(A, A A^{\prime} \bar{\otimes}_{R_{2}} A A^{\prime}\right)$. So let $a \in A$. Then

$$
\begin{aligned}
\left(W_{23}\left(l \otimes \Delta^{\prime}\right)(W)\right)(a) & =\sum W_{23}\left(a_{(1)}\right)\left(l \otimes \Delta^{\prime}\right)(W)\left(a_{(2)}\right) \\
& =\sum \varepsilon\left(a_{(1)}\right) W \Delta^{\prime}\left(a_{(2)}\right) \\
& =W \Delta^{\prime}(a),
\end{aligned}
$$

while

$$
\begin{aligned}
((l \otimes \Delta)(W)) W_{23}(a) & =\sum_{(a)}((l \otimes \Delta) W)\left(a_{(1)}\right) W_{23}\left(a_{12}\right) \\
& =\Delta(a) W .
\end{aligned}
$$

This proves the Yang-Baxter equation.
We now verify these relations in our examples.
5.4 EXAMPLE. Take the example of the group algebra of a finite group G (see example 4.3). Here W is given by $\sum_{s \in G} \delta_{s} \otimes s$ and so

$$
\begin{aligned}
& W_{12}=\sum_{s \in G} \delta_{s} \otimes s \otimes 1 \\
& W_{13}=\sum_{s \in G} \delta_{s} \otimes 1 \otimes s \\
& W_{23}=\sum_{s \in G} 1 \otimes \delta_{s} \otimes s .
\end{aligned}
$$

Therefore we get

$$
\begin{aligned}
W_{12} W_{13} W_{23} & =\sum_{s, t, u}\left(\delta_{s} \otimes s \otimes 1\right)\left(\delta_{t} \otimes 1 \otimes t\right)\left(1 \otimes \delta_{u} \otimes u\right) \\
& =\sum_{s, u} \delta_{s} \otimes s \delta_{u} \otimes s u .
\end{aligned}
$$

(i) In $A A^{\prime} \bar{\bigotimes}_{R_{1}}\left(A A^{\prime} \bar{\bigotimes}_{R_{1}} A A^{\prime}\right)$ we have

$$
\begin{aligned}
W_{23} W_{12} & =\sum_{s, t}\left(1 \otimes \delta_{s} \otimes s\right)\left(\delta_{t} \otimes t \otimes 1\right) \\
& =\sum_{s, t} \delta_{t} \otimes \delta_{s} t \otimes s \\
& =\sum_{s, t} \delta_{t} \otimes t \delta_{t-1 s} \otimes s \\
& =\sum_{s, u} \delta_{t} \otimes t \delta_{u} \otimes t u
\end{aligned}
$$

and this proves the Pentagon equation.
(ii) In $A A^{\prime} \bar{\otimes}_{R_{2}}\left(A A^{\prime} \bar{\otimes}_{R_{2}} A A^{\prime}\right)$ we have

$$
\begin{aligned}
W_{23} W_{13} W_{12} & =\sum_{s, t, u}\left(1 \otimes \delta_{s} \otimes s\right)\left(\delta_{t} \otimes 1 \otimes t\right)\left(\delta_{u} \otimes u \otimes 1\right) \\
& =\sum_{s, t} \delta_{t} \otimes \delta_{s} t \otimes s t \\
& =\sum_{s, t} \delta_{t} \otimes t \delta_{t-1 s t} \otimes s t \\
& =\sum_{s, u} \delta_{t} \otimes t \delta_{u} \otimes t u
\end{aligned}
$$

and this proves the Yang-Baxter equation.
5.5 EXAMPLE. Now let us consider the case of an algebra generated by a single self-adjoint element (as in example 4.4). Here W is given by the power series

$$
\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{1}{i \lambda}(k \otimes h)\right)^{n} .
$$

This is not an element in $B \otimes A$, but in $L(A, A)$ it can be seen as a limit of elements in $B \otimes A$.
(i) In $A A^{\prime} \bar{\bigotimes}_{R_{1}}\left(A A^{\prime} \bar{\bigotimes}_{R_{1}} A A^{\prime}\right)$ we have

$$
\begin{aligned}
W_{23} W_{12} W_{23}^{*} & =(1 \otimes W)(W \otimes 1)\left(1 \otimes W^{*}\right) \\
& =(1 \otimes W) \sum_{n=0}^{\infty} \frac{1}{n!}\left(\left(\frac{1}{i \lambda}(k \otimes h)\right)^{n} \otimes 1\right)\left(1 \otimes W^{*}\right) \\
& =\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{1}{i \lambda}\right)^{n} k^{n} \otimes\left(W(h \otimes 1)^{n} W^{*}\right) .
\end{aligned}
$$

We already know from example 4.4 (ii) that $W(h \otimes 1) W^{*}=h \otimes 1+1 \otimes h$, so that $W(h \otimes 1)^{n} W^{*}=(h \otimes 1+1 \otimes h)^{n}$. This gives

$$
\begin{aligned}
W_{23} W_{12} W_{23}^{*} & =\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{1}{i \lambda}\right)^{n} k^{n} \otimes(h \otimes 1+1 \otimes h)^{n} \\
& =\sum_{n=0}^{\infty} \sum_{j=0}^{n} \frac{1}{n!} \frac{n!}{j!(n-j)!}\left(\frac{1}{i \lambda}\right)^{n} k^{n} \otimes h^{j} \otimes h^{n-j} \\
& =\left(\sum_{n=0}^{\infty}\left(\frac{1}{i \lambda}\right)^{n} k^{n} \otimes h^{n} \otimes 1\right)\left(\sum_{m=0}^{\infty}\left(\frac{1}{i \lambda}\right)^{m} k^{m} \otimes 1 \otimes h^{m}\right) \\
& =W_{12} W_{13} .
\end{aligned}
$$

So we get $W_{23} W_{12}=W_{12} W_{13} W_{23}$, and this is the Pentagon equation.
(ii) We already know that $A \bar{\otimes}_{R_{2}} B$ is a commutative algebra and one can check in a similar way that also $A A^{\prime} \bar{\otimes}_{R_{2}} A A^{\prime}$ and $A A^{\prime} \bar{\otimes}_{R_{2}}\left(A A^{\prime} \bar{\otimes}_{R_{2}} A A^{\prime}\right)$ are commutative. Hence the Yang-Baxter equation $W_{23} W_{13} W_{12}=W_{12} W_{13} W_{23}$ is trivially satisfied in $A A^{\prime} \bar{\otimes}_{R_{2}}\left(A A^{\prime} \bar{\otimes}_{R_{2}} A A^{\prime}\right)$.

6. References

1. E. Abe, Hopf Algebras. Cambridge University Press (1977).
2. S. Baaj and G. Skandalis, Unitaires Multiplicatifs et dualité pour les Produits Croisés de C^{*}-Algèbres. Ann. Scient. Éc. Norm. Sup., 4^{e} série, t. 26 (1993) 425-488.
3. V. G. Drinfel'd, Quantum Groups. Proceedings ICM Berkeley (1986), 798-820.
4. M. Jimbo, Introduction to the Yang-Baxter equation. Int. J. of Modern Physics 4 (1989) 3759-3777.
5. T. Koornwinder, Seminar notes, Amsterdam (1991).
6. S. Majid, Non-commutative geometric groups by a bicrossproduct construction: Hopf algebras at the Planck scale. Thesis Harvard University (1988).
7. S. Majid, Physics for Algebraists: Non-commutative and Non-commutative Hopf Algebras by Bicrossproduct Construction. Journal of Algebra 130 (1990), 17-64.
8. S. Majid, More examples of bicrossproduct and double cross product Hopf algebras. Israel Journal of Mathematics 72, Nos. 1-2, (1990), 133-148.
9. S. Majid, Hopf-von Neumann Algebra Bicrossproducts, Kac algebra Bicrossproducts, and the Classical Yang-Baxter Equations. Journal of Functional Analysis 95 (1991), 291-319.
10. P. Podles̀ and S. L. Woronowicz, Quantum deformation of Lorentz group. Commun. Math. Phys. 130 (1990), 381-431.
11. G. Skandalis, Operator Algebras and Duality. Proceedings of the ICM Kyoto (1990), 997-1009.
12. M. E. Sweedler, Hopf Algebras. Mathematical Lecture Note Series. Benjamin. N.Y., 1969.
13. M. Takeuchi, Matched pairs of groups and bismash products of Hopf algebras. Communications in Algebra 9(8) (1981), 841-882.
14. A. Van Daele, Dual pairs of Hopf *-algebras. K. U. Leuven, preprint (1990) (first version), Bull. London Math. Soc. 25 (1993) 209-230 (second version).
15. S. L. Woronowicz, Compact Matrix Pseudogroups. Comm. Math. Physics 111 (1987), 613-665.
16. S. L. Woronowicz, Unbounded elements affiliated with C^{*}-algebras and non-compact quantum groups. University of Kyoto, preprint (to appear in Commun. Math. Phys.).
17. S. L. Woronowicz, Solutions of the braid equation related to a Hopf algebra. University of Warsaw, preprint (1991).
