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Introduction

The Beilinson conjectures ([2], [3]) interpret the special values of the L-
functions associated to a projective variety X defined over a number field to
the K-theory of X, via a regulator which generalizes that of Dirichlet. In this
paper, we examine part of these conjectures in the case where X is the Fermat
curve FN:xN+yN=zN of exponent N, where N  3. Our investigation is

inspired partly by Beilinson’s theorem on modular curves ([3], also see [17]),
and by a result of Rohrlich on the divisor class group of FN [12].

Let us recall what Beilinson’s theorem says, following the exposition in [17].
Let X/Q be a modular curve, and let g be the genus of X. For each modulator
curve Y/Q which covers X via a morphism 0y: Y ~ X defined over Q, there is
a homomorphism 03B8Y*: K2Y ~ K2X. Let fly be the subspace K2 Y 0 Q with
divisorial support at the cusps of Y (this is made precise in Section 1 below),
and let &#x26;x denote the subgroup of K2X Q Q spanned by 0y*(2Y) for all such
Y Then &#x26;x c H2H(X, Q(2))z and the image of Yx in H22(X, R(2)) under the
regulator homomorphism regx is a Q-structure of H2D(X, R(2)), and

with c ~ L(g)(0, X) mod Q*.
In general, one must look at &#x26;x and not just Jx. For example, if p is prime,

then Xo(p) has exactly two cusps, and therefore only one (up to scalar multiple)
modular unit f It then follows that LXo(p) is trivial.

For FN, an analogue of the group of modular units is provided by those
functions whose divisorial support is contained in the points at infinity, which
are those points P on FN such that xyz(P) = 0. In partial analogy with
Beilinson’s construction, we investigate the subgroup of K2FN generated by the
images under the transfer maps K2FdN ~ K2FN of those elements whose
divisorial support is contained in the points at infinity. We show that this
subgroup is of positive rank, and that, over Q(p2N), it is a cyclic Aut FN-
module. Using this, we descend to Q and obtain a bound for the rank of the
corresponding group over Q. In contrast to the modular situation, this
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subgroup is usually of rank smaller than the rank of K2FN as predicted by the
conjecture, namely, (N - 1)(N - 2)/2, the genus of FN. The rank of this

subgroup, and a set of generators for the vector space obtained by tensoring
with Q, will be determined in [14].
We now briefly indicate the organization of this paper. We begin by

summarizing what we need from K-theory. In Section 2, we exhibit an explicit
element in K2FN which we show is of infinite order. In Section 3, we describe
the subgroup of K2FN which is generated by the K-theoretic transfers of those
elements in K2FaN arising from functions with divisorial support on the points
at infinity. We will see that this is simply the group of such elements in K2FN.
Section 4 is an interlude, where we look at the example of F4. In the final
section, we show that the subgroup of K2FN under investigation is a principal
Aut FN-module, and use this to determine an upper bound on its rank as an
abelian group in case N is an odd prime.

This work is based upon part of the author’s Rutgers Ph.D. thesis. 1 would
like to thank my advisor, David Rohrlich, both for suggesting this topic for
research and for the generosity with which he offered advice, assistance, and
encouragement. 1 also thank Chuck Weibel for pointing out that in an earlier
draft, 1 missed a few symbols in the proof of Theorem 3. Finally, 1 would

like to thank the referee for many helpful comments and suggestions for
improvement.

1. The regulator, Bloch’s trick, and symbols with support

We begin by recalling what the regulator of Beilinson and Bloch is in the

special case that X is a smooth projective curve defined over Q. We fix an
algebraic closure Q c C of Q. All algebraic extensions of Q which arise are
tacitly understood to lie in this fixed choice of Q.

Let F be a field. By Matsumoto’s theorem [10], K2F ~ (F* Q F*)/R, where
R is the subgroup of F* 0 F* generated by the tensors of the form

f Q (1 - f), with f ~ 0, 1. The image of f Q h in K2F is denoted {f, hl, and
is referred to as a symbol.
Let X be a smooth projective curve of genus g defined over Q. The

localization sequence provides us with the following exact sequence:

where
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with Tp being the tame symbol at P:

By Garland’s theorem [9], K2Q(P) is torsion, whence K2X and ker 03C4 agree,

up to torsion. If k is any finite extension of Q, then by viewing X as a curve
over k, these remarks, with Q replaced with k, remain valid.

In [2], Beilinson defines a regulator for K2X, which agrees with that of
Bloch [6]. This may be viewed as a homomorphism

which is functorial in X. The superscript denotes the -1-eigenspace of

H1(X(C), R(1)) under the action of complex conjugation on both X(C) and
R(l) = 2niR. We remark that H1(X(C), R(1))- is isomorphic to the Deligne
cohomology group H2D(X, R(2)) mentioned above in the Introduction [18].
To describe regx, we assume for simplicity that {f, hl E ker 1:. For details, we

refer the reader to [8] or [11]. We view H1(X (C), C) as the space of C-valued
functionals on H1(X(C), Z). Let y be a closed path on X(C), and fix a

basepoint Po E y; assume that f and h are both regular and nonzero on y. Then

Here, we choose fixed branches of log f and log h on some neighborhood of
y, and the integrals are taken starting at Po. One may show that this definition
depends only upon the class of 03B3~H1(X(C), Z).

Let 03A91+X dénote the subspace of H0(X(C), 03A91X/C) which is invariant under the
action of complex conjugation on both X(C) and 03A91X/C. Under the identifica-
tion H1(X(C), R(1))- with HomR(03A91+X R), we view regX({f,h)) as a functional
on real 1-forms. One then obtains the following formula for the regulator:

One can check that this integral converges for any pair of functions on X, and
we thereby obtain a homomorphism



226

which is functorial in X and extends the regulator as defined above. As an
immediate consequence of this functoriality, we have the following:

It follows from this, or directly from (2), that the regulator vanishes on those
symbols of which one entry is constant.
We now turn to the transfer map in K-theory, and describe those facts which

we will need in the sequel.
Let F/L be a finite Galois extension of fields with Galois group G, and

denote by 0 the inclusion L c+ F. The two maps

and

are then related to the action of Galois on KnF in the following manner:

This follows from the fact that 0* is induced from the extension of scalars
functor P(L) ~ P(F), and cP* is induced from the restriction of scalars functor
P(F) - P(L), where P(A) is the category of finitely generated projective
A-modules for any commutative ring A.
We will also need to know how the transfer behaves with respect to the

regulator map, as follows. Let k/Q be a finite Galois extension, and let

tf¡: Q(X) 4 k(X) be the field inclusion.

LEMMA 2. Let cxEK2k(X). Then

where

Proof. Since the regulator is defined over C and 03C8* is induced by the field
inclusion, we have regx(fl) = regX(03C8r*03B2) for all fi E K2Q(X). Letting fi = 03C8*03B1,
the lemma then follows from (3). D
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In particular, if regx(a) = 0, then regX(03C8*03B1) = 0.
We now recall Bloch’s trick [4]. Let S = {P0,...,Pn} c X(Q). Choose an

embedding X 4 Jac X such that Po corresponds to the identity element of
Jac X. Assume that the images of the Pi under this embedding are torsion
points.

Let f and g be functions in Q(X) whose divisors consist entirely of points
in S. One version of Bloch’s trick asserts that there is an integer N, functions
cPi E Q(X)*, and constants ci~Q* such that a = {f,g}N 03A0i {~i, cil is in the

kernel of the tame symbol. We will refer to such an oc as a normalization of

{f,g}. Note that 03B1~K2L(X) for some finite extension L of Q; by taking the
K-theoretic transfer from L(X) to Q(X) we obtain an element in

K2Q(X) n kerr. We remark that if k is a finite extension of Q, S c X(k), and
f, g E k(X)*, then Oi and ci can be chosen to be defined over k.

Utilizing this version of Bloch’s trick, we now construct a subgroup of
K2X 0 Q which is associated to S.

Choose k so that S c X(k), let Ws = {f~Q(X)*: ordQ( f ) = 0 for all Q ~ SI,
and let fnl be generators for uS/Q* defined over k. Let {uS, uS}
denote the subgroup of K20(X) generated by symbols {f,g} such that

f,g~uS. Then {uS, uS} is generated by symbols of the following three types:

The symbols in (5) are torsion, being in Klo = lim K2L, with the limit being
taken over all finite extensions L of Q in Q. The symbols in (6) are pullbacks
from K20(p’); we may therefore apply Bloch’s trick on P’ and thereby obtain
a symbol in K2Q(X) which is a pullback from K2p’/O. This all occurs over
some finite extension of Q, whence this symbol is torsion.

Let NXS(k) be the group generated by a normalization of each of those
symbols in (7). This group depends on the normalizations chosen; see the
remarks below for more about this dependence. Observe, however, that if JVx,s
denotes the group generated by all the symbols in (5)-(7), then JVx,s(k) 0 Q
and JVx,s 0 Q have the same image under the regulator map.
We now put 9-x,s(Q) = tr JVx,s(k), where tr is the transfer map from

K2k(X) to K2Q(X). By (3), JX,S(Q) c kerT, and we may therefore identify
9-x,s(Q) 0Q with a subspace of K2X~Q, which we shall refer to as the
subspace of K2X 0 Q with divisorial support on S.

REMARKS. Bloch’s trick, as stated in [4], does not specify how to choose N
and ci, or even that the modifications to {f,g} to yield an element ofkerr are
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of the type that we have selected. Any two normalizations of {f, gl would differ
by a rational multiple and an element of r = ker i n ker regx. Very little, if

anything, seems to be known about r; Beilinson conjectures that

(r ~ Q)~H2H(X, Q(2))Z = 0. If X is such that H2H(X, Q(2)) Z = H2H(X, Q(2)),
then conjecturally our construction yields the same vector space as any version
of Bloch’s trick. In particular, the Fermat curves satisfy this condition, since
their Jacobians have CM: Letting 5N denote a regular proper model for FN
over Z, we have the localization exact sequence in K-theory:

By ([19], Theorem 3) the Euler factor Lp(FN,S) has no pole at s = 0; therefore,
the right-most vector space is zero ([11], Proposition 4.7.9). Finally, the

left-most vector space is zero ([1]).

2. An element of infinité order

Let 03B6 = e203C0i/N, and let Ai,j denote the automorphism

of FN. Let t1/N denote the principal branch of the Nth root function, and let y
denote the following path from (1,0) to (0, 1) on FN(C):

For integers m and n, let ym,n denote the following closed path on FN(C):

By a slight abuse of notation, we will also denote by 03B3m,n the corresponding
element of H1(FN(C), Z).
We will need the beta function B(u, v), which is defined for positive real

numbers u and v by
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THEOREM 1. The symbol {1 - x, 1 - y}2N belongs ker i and has non-zero
image under regFN. In particular, {1 - x, 1 - yl2N represents an element in K2FN
of infinite order.

Proof. An easy calculation shows that {1 - x, 1 - y}2N ~ ker L. We show that
{1 - x, 1 - y}2N has nontrivial image under the regulator homomorphism by
computing its value on the 1-cycle y 1,1 + y 1, -1. Let e &#x3E; 0 be small, and choose
a representative path Ym,n,f: for ym,n such that the initial point of y"t,n,E is

((1 - 03B5)1/N, 03B51/N), and such that both 1 - x and 1 - y are nonzero and regular
on 03B3m,n,03B5. Let Q = {1 - x, 1 - yl2N. Choosing the branches of log(l - x) and
log(l - y) which are real-valued on y, we find that regFN(03C3)(03B3 m,n) is equal to:

Note that as 03B5 tends toward zero, the imaginary part of the second integral
tends toward zero. Since the value of this integral depends only on the

homology class of ym,n and not on the basepoint chosen, we conclude that

For any a, b E Z, let

Then

The interchange of the two sums and the integral may be justified by a double

application of the Lebesgue dominated convergence theorem. Moreover, the
double sum converges absolutely, which may be seen by considering the case
a = b = 0. Noting that the last integral above is B(j/N, klN + 1) and using the

identity
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we obtain

Returning to 03B3m,n, we find that

Therefore

Define bk by

and for 1 KN, let

Note that bk &#x3E; 0 for all k and that the sequence {bk} is monotonically
decreasing, so 03B21 &#x3E; 03B22 &#x3E;... &#x3E; fiN &#x3E; 0. Let N’ be defined by

Then
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which is nonzero, since each summand is positive. D

3. Symbols with support at infinity and the Fermât tower

We now turn our attention to the elements in K2FN which have divisorial
support on the points at infinity. By the points at infinity we mean the set
SN = {P~FN(Q):xyz(P) = 01. There are 3N such points, given in projective
coordinates by [(j, 0, 1], [0,’ j, 1], and [03BE03BEj, 1, 0], for 1  j  N, where ( is a

primitive Nth root of unity and j is a primitive 2Nth root of unity, which we
shall always take to satisfy 03BE2 = 03B6.

Let k = Q(P 2N), and, to fix matters, choose an embedding l:FN  Jac FN
defined over Q and sending the point [0,1,1] to the origin. A theorem of
Rohrlich [12] asserts that I(S N) is torsion and, in the notation of Section 1, the
group %s/Q* is generated by the following functions, all of which are defined
over k:

with E(N) = N if N is odd and E(N) = N/2 if N is even.
We are interested in the space JFN,SN(Q) 0 Q, the space of symbols in

K2FN Q Q with divisorial support at infinity. Recall that this space is

03C8*(NFN,SN(k)) Q Q, where ,41’F,,S,(k) is the group generated by normalizations
of the symbols obtained from the functions in (9)-(12), and 03C8* is the transfer
map induced by the field inclusion 03C8~:Q(FN)  k(FN).
We will see below (Theorem 3) that for a suitable choice of normalizations,

where rN is the automorphism group of FN. Let yFN,SN(k) denote the Q-vector
space Q[0393N]{1 - x, 1 - yl, and let flFN,SN(Q) = 03C8*yFN,SN(k). It follows from

Theorem 3 that JFN,SN(Q) 0 Q = flFN,SN(Q). We will assume these facts in this
section, since the results below do not depend on those discussed here.
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For each positive integer d, let

be the morphism given by

Let u and u be the standard coordinate functions on FN, such that u = Xd and
v = ya. Put k. = Q(P2dN)’ so ka(FaN) = kd(FN)(x, y) is an abelian extension of

kd(FN) with Galois group Gd~03BCd x itd-
For each integer n  1, let Ai,j(n) (i and j read modulo n), a(n), and ~(n)

denote the following elements of rn = Aut Fn :

where (n is a primitive nth root of unity and 03BE2n = 03BE, 03BEnn = -1. Then Tn is

generated by Ai,j(n), a(n), and tl(n), and is isomorphic to a semidirect product
of Pn  03BCn and the symmetric group S3.
Now fix N, let 03B6N and 03BEN be as above, and for each integer d  1, choose 03B6dN

and ÇdN such that ÇjN = (N and ÇjN = 03BEN. Then the map 0393dN ~ rN given by

is a homomorphism, the kernel of which is the relative automorphism group
Aut(FdN/FN). We view yFN,SN(k) as a rdN-module via this map. Let

jd:k1(FN)  ka(FN) be the field inclusion.

PROPOSITION 1. ~d*yFdN,SdN(kd) = j*dyFN,SN(k).
Proof. A direct calculation using (3) shows that

is raN-equivariant, and that
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Therefore

It follows from (4) that ker 0* is trivial (recall that we have tensored with Q).
Therefore ~d*yFdN,SdN(kd) = j*YF,,S,(k). ~

We now descend to Q. Let 03C8d: Q(FdN)  kd(FdN) be the field inclusion.

Proof. What we must show is that

From the following diagram of field inclusions:

we obtain the following commutative diagram in K-theory:
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Note that by (4), (jd*·j*d)yFN,SN(k) = !/ FN,SN(k). Therefore

as desired. D

4. The Fermât curve of exponent 4

In this section, we examine in some detail the curve F4. In particular, we will
exhibit a symbol {f, 91 EflF4SJQ) such that the divisor of f contains points
which are of infinite order under the canonical embedding F4 ~ Jac F4;
compare with [15]. In some contrast to [15], we can relate this symbol to the
L-value L(3)(F4, 0) in the manner predicted by the Beilinson conjecture.
We begin by showing that the symbols

generate a rank 3 subgroup of K2F4. Note that these symbols lie in flF 4,S4(Q).
Let ym,n be as in Section 2. Calculating as in the proof of Theorem 1, we find

that

where

Note that /31 &#x3E; 03B22 &#x3E; 03B23 &#x3E; 03B24 &#x3E; 0; thus in the first two cases the regulator
value is non-zero.

A similar calculation for a2 yields:
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Define Boaa and Beven by

Note that Boaa &#x3E; Beven &#x3E; 0. Calculating as in the proof of Theorem 1, one finds
that

which is nonzero. Finally, one may verify that these elements are linearly
independent by considering their values on the paths 03B32,1, 03B31,3 and 03B33,3.

It is not difficult to write down an explicit isomorphism X0(64) ~ F4 which
is defined over Q, and is such that the cusps of Xo(64) correspond precisely
with the points at infinity on F4. Thus 03B11, a2, and a3 generate the subspace
19X.(64) of K2X0(64) ~ Q described in the Introduction. In particular, the
images of al, a2, and 03B13 under regF4 define a Q-structure on H;(F 4’ R(2)), with
volume equal to a rational multiple of L(3)(F 4’ 0).
On the other hand, we can approach K2F4 "from below". The Jacobian

Jo(64) of X0(64) is isogenous over Q to E x E’ x E’, where E and E’ are the
elliptic curves

and we have morphisms p: F4 ~ E, 03B2: F4 ~ E’, and 03B2’: F4 ~ E’ given by:
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One computes that

Noting that the divisors of the pullbacks to F4 of 8X/Y’ and 1 - 2X/Y by fl
and /3’ consist of points at infinity, we conclude that these functions have
torsion divisorial support on E’. A calculation using Rohrlich’s explicit version
[13] of Bloch’s theorem [5] shows that

defines a Q-structure on H’(E, R(2)) with volume equal to c’L’(0, E’), where
c’~Q*. The conjectures of Beilinson imply that

is a generator for K2E’ Q Q.
Note that

while functions on F4, actually define functions on E, which we also denote by
f and g. The divisors of f and g on E consist of torsion points, and computing
as above we find that regE({f, gl) determines a Q-structure on H2D(E, R(2))
with volume equal to cL’(0, E) with c~Q*. The Beilinson conjectures imply
that {f,g} is a generator for K2E Q Q. Put a3 = 03C1*{f,g}8.
There is a decomposition of cohomology induced by 03C1, 03B2, and 03B2’:

H1(F4(C), C) ~ H1(E(C), C) (f) H 1 (E’(C), C) (D H 1 (E’(C), C)

which is orthogonal with respect to the pairing
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where we are using DeRham cohomology. Therefore 03B11, a2, and â3 span a
3-dimensional subspace V of K2F4 Q Q, and the image of V under the
regulator is a Q-structure of H 2(F,, R(2)) with volume equal to a rational
multiple of L(3)(F 4’ 0).

If the Beilinson conjectures are true, we should have V = LF4,S4(Q) (and both
should be equal to K2F4 Q Q). We now verify that it is indeed the case that
V = flF4,S4(Q). Note that it suffices to check that â3 E JF4,S4(Q) O Q.
A computation using (3) shows that, up to torsion,

Using the algorithm in [16], we compute that, up to torsion,

Therefore, â3 E f2p 4,S (Q), as desired.
In closing, we noee that the divisor of 1 - xly contains points which are not

points at infinity on F4; by a result of Coleman [7], these points are of infinite
order in Jac F4. 

5. The group of symbols with support at infinity

In this section, we fix our attention on FN, and let k = k1 = Q(J.l2N)’
JV = NFN,SN(k), y = yFN,SN(k), J = JFN,SN(Q), 03C8 = 1 ’ Q(FN)  k(FN), and
G = G 1 = Gal(k/Q).

In general, Y Q Q cannot be equal to K2FN ~ Q, provided that one accepts
the Beilinson conjectures. For the predicted rank of K2FN is the genus of FN,
which equals (N - 1XN - 2)/2, and we have

PROPOSITION 2. Let p be an odd prime. Then dimQ JFp,Sp(Q) 0 Q 
3(p - 1). 1 n particular, for p &#x3E; 7, we have dimQ JFp,Sp(Q) 0 Q  genus(Fp).

Proposition 2 is a consequence of the following:

THEOREM 3. With an appropriate choice of normalizations, N 0 Q = y =
Q[0393N]{1 - x, 1 - y}.

Proof. By (9)-(12), it is clear that X Q Q is generated over Q by normaliz-
ations of the following symbols:
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for 0  j, k  N - 1. Note that we do not need to include symbols for which
one of the entries is a function listed in (10)-(12), because we have tensored
with Q.
The symbols in (16) are torsion in K2k(FN).
Although not torsion, appropriate powers of the symbols in (15) are

pullbacks from K2k(P’), and therefore have trivial normalizations.
The symbols in (14) are also pullbacks from K2k(P1). Indeed, letting

q = q(N), one finds that:

Thus the symbols in (14)-(16) all have trivial normalizations. We now show
that the symbols in (13) have normalizations which lie in E7, and explicitly
determine these normalizations. Given a symbol {f, gl, we will denote a
normalization of {f, g} by v( f, g).

In examining the other symbols in (13), we will need the following. Since
{1 - X, y}2N = {1 - x, 1 - xN}2~K2k(x), we apply Bloch’s trick and select b =
ni {fi(x), cil with f E k(x)* and ci E k* such that

Therefore {1 - x, y}2N·03B4 is torsion; let M denote its order. We thus have

We note that the image of 03B4 under any automorphism of FN is a product of

symbols in which one entry is constant.
A routine calculation shows that we may select normalizations of the

remaining symbols in (13) as follows:


