Algebraic cycles and Hodge theory on generalized Reye congruences
Compositio Mathematica, Tome 92 (1994) no. 1, pp. 1-22.
@article{CM_1994__92_1_1_0,
     author = {Oliva, Cristina},
     title = {Algebraic cycles and {Hodge} theory on generalized {Reye} congruences},
     journal = {Compositio Mathematica},
     pages = {1--22},
     publisher = {Kluwer Academic Publishers},
     volume = {92},
     number = {1},
     year = {1994},
     mrnumber = {1275718},
     zbl = {0816.14004},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1994__92_1_1_0/}
}
TY  - JOUR
AU  - Oliva, Cristina
TI  - Algebraic cycles and Hodge theory on generalized Reye congruences
JO  - Compositio Mathematica
PY  - 1994
SP  - 1
EP  - 22
VL  - 92
IS  - 1
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1994__92_1_1_0/
LA  - en
ID  - CM_1994__92_1_1_0
ER  - 
%0 Journal Article
%A Oliva, Cristina
%T Algebraic cycles and Hodge theory on generalized Reye congruences
%J Compositio Mathematica
%D 1994
%P 1-22
%V 92
%N 1
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1994__92_1_1_0/
%G en
%F CM_1994__92_1_1_0
Oliva, Cristina. Algebraic cycles and Hodge theory on generalized Reye congruences. Compositio Mathematica, Tome 92 (1994) no. 1, pp. 1-22. http://archive.numdam.org/item/CM_1994__92_1_1_0/

1 F. Bardelli, On Grothendieck's generalized Hodge conjecture for a family of threefold with trivial canonical bundle. J. reine und angew. Math. 422 (1991), 165-200. | MR | Zbl

2 A. Beauville, Complex algebraic surfaces. London Math. Soc. Lcture Note Series 68. | Zbl

3 P. Deligne, Theorie de Hodge III. Publ. Math. I.H.E.S. 44 (1974), 5-78. | Numdam | MR | Zbl

4 P.A. Griffiths, Periods of integrals on algebraic manifolds, II. Am. Jour. of Math. 90 (1968), 805-864. | MR | Zbl

5 A. Grothendieck, Hodge's general conjecture is false for trivial reasons. Topology 8 (1969), 299-303. | MR | Zbl

6 K. Kodaira, A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds. Ann. of Math. 75 (1962), 146-162. | MR | Zbl

7 K. Lamotke, The topology of complex projective varieties after S. Lefschetz. Topology 20 (1981), 15-51. | MR | Zbl