A special case of the Garnier system, (1,4)-polarized abelian surfaces and their moduli
Compositio Mathematica, Volume 92 (1994) no. 2, pp. 157-203.
@article{CM_1994__92_2_157_0,
     author = {Vanhaecke, Pol},
     title = {A special case of the {Garnier} system, $(1, 4)$-polarized abelian surfaces and their moduli},
     journal = {Compositio Mathematica},
     pages = {157--203},
     publisher = {Kluwer Academic Publishers},
     volume = {92},
     number = {2},
     year = {1994},
     mrnumber = {1283227},
     zbl = {0851.58026},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1994__92_2_157_0/}
}
TY  - JOUR
AU  - Vanhaecke, Pol
TI  - A special case of the Garnier system, $(1, 4)$-polarized abelian surfaces and their moduli
JO  - Compositio Mathematica
PY  - 1994
SP  - 157
EP  - 203
VL  - 92
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1994__92_2_157_0/
LA  - en
ID  - CM_1994__92_2_157_0
ER  - 
%0 Journal Article
%A Vanhaecke, Pol
%T A special case of the Garnier system, $(1, 4)$-polarized abelian surfaces and their moduli
%J Compositio Mathematica
%D 1994
%P 157-203
%V 92
%N 2
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1994__92_2_157_0/
%G en
%F CM_1994__92_2_157_0
Vanhaecke, Pol. A special case of the Garnier system, $(1, 4)$-polarized abelian surfaces and their moduli. Compositio Mathematica, Volume 92 (1994) no. 2, pp. 157-203. http://archive.numdam.org/item/CM_1994__92_2_157_0/

[A] Arnold, V.: Mathematical Methods of Classical Mechanics. Springer-Verlag (1978). | MR | Zbl

[AvM1] Adler, M., Van Moerbeke, P.: Algebraic completely integrable systems: a systematic approach. Perspectives in Mathematics, Academic Press (to appear in 1995).

[AvM2] Adler, M., Van Moerbeke, P., Representing the Kowalevski and Henon-Heiles motions as Manakov geodesic flows on SO(4) and a two-dimensional family of Lax pairs, Commun. Math. Phys., 114, 1-41 (1987).

[AvM3] Adler, M., Van Moerbeke, P., The complex geometry of the Kowalewski-Painlevé analysis, Invent. Math., 97, 3-51 (1987). | MR | Zbl

[B] Baltuch, J.: Integrable systems and reducible Abelian surfaces of type (1,2). Doctoral thesis at Brandeis University, 1991.

[Ba] Barth, W.: Abelian surfaces with (1, 2) polarization, Conference on Algebraic Geometry, Sendai (1985). | Zbl

[Be] Beauville, A., Jacobiennes des courbes spectrales et systèmes hamiltoniens complètement intégrables, Acta Math., 164, 211-235 (1990). | MR | Zbl

[BLS] Birkenhake, C., Lange, H., Van Straten, D., Abelian surfaces of type (1,4), Math. Ann., 285, 625-646 (1989). | MR | Zbl

[Bu] Bueken, P.: A geodesic flow on SO(4) and Abelian surfaces of type (1, 4). (Preprint).

[CC] Chudnovsky, D.V., Chudnovsky, G.V., A completely integrable class of mechanical systems connected with Korteweg-de Vries and multicomponent Schrödinger equations, Lett. Nuovo Cim., 22/4, 47-51 (1978). | MR

[D] Dubrovin, B.A., Theta functions and nonlinear equations, Russian Math. Surveys, 36/2, 11-92 (1982). | MR | Zbl

[F] Flaschka, H., Monodromy- and Spectrum-Preserving Deformations I, Commun. Math. Phys., 76, 65-116 (1980). | MR | Zbl

[G] Garnier, R., Sur une classe de systèmes différentiels abéliens déduits de théorie des équations linéaires, Rend. Circ. Math. Palermo, 43/4, 155-191 (1919). | JFM

[Gr] Griffiths, P.A., Linearizing flows and a cohomological interpretation of Lax equations, Am. J. of Math., 107, 1445-1483 (1985). | MR | Zbl

[GH] Griffiths, P. and Harris, J.: Principles of Algebraic Geometry. Wiley-Interscience, New York (1978). | MR | Zbl

[Hu] Hudson, R.W.H.: Kummer's quartic surface. Cambridge: Cambridge University Press (1990); first published in 1905. | JFM | MR | Zbl

[LB] Lange, H., Birkenhake, C.: Complex Abelian Varieties. Springer-Verlag (1992). | MR | Zbl

[M1] Mumford, D., On the equations defining Abelian varieties I, Invent. Math., 1, 287-354 (1966). | EuDML | MR | Zbl

[M2] Mumford, D.: Tata lectures on Theta 2. Birkhäuser (1984). | MR | Zbl

[P] Perelomov, A.M.: Integrable systems of classical mechanics and Lie algebras I. Birkhäuser (1990). | MR | Zbl

[S] Schlesinger, L., Uber eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten, J. für Math., 141, 96-145 (1912). | EuDML | JFM

[Sh] Shiota, T., The characterization of Jacobian varieties in terms of soliton equations, Invent.Math., 839, 333-382 (1986). | EuDML | MR | Zbl

[V1] Vanhaecke, P., Linearizing two-dimensional integrable systems and the construction of action-angle variables, Math. Z., 211, 265-313 (1992). | EuDML | MR | Zbl

[V2] Vanhaecke, P., Stratifications of hyperelliptic Jacobians and the Sato Grassmannian. (MPI Preprint/93-24) (to appear in Acta Math. Appl.). | MR | Zbl