@article{CM_1994__92_3_249_0, author = {Urbanowicz, Jerzy}, title = {On diophantine equations involving sums of powers with quadratic characters as coefficients, {I}}, journal = {Compositio Mathematica}, pages = {249--271}, publisher = {Kluwer Academic Publishers}, volume = {92}, number = {3}, year = {1994}, mrnumber = {1286126}, zbl = {0810.11017}, language = {en}, url = {http://archive.numdam.org/item/CM_1994__92_3_249_0/} }
TY - JOUR AU - Urbanowicz, Jerzy TI - On diophantine equations involving sums of powers with quadratic characters as coefficients, I JO - Compositio Mathematica PY - 1994 SP - 249 EP - 271 VL - 92 IS - 3 PB - Kluwer Academic Publishers UR - http://archive.numdam.org/item/CM_1994__92_3_249_0/ LA - en ID - CM_1994__92_3_249_0 ER -
%0 Journal Article %A Urbanowicz, Jerzy %T On diophantine equations involving sums of powers with quadratic characters as coefficients, I %J Compositio Mathematica %D 1994 %P 249-271 %V 92 %N 3 %I Kluwer Academic Publishers %U http://archive.numdam.org/item/CM_1994__92_3_249_0/ %G en %F CM_1994__92_3_249_0
Urbanowicz, Jerzy. On diophantine equations involving sums of powers with quadratic characters as coefficients, I. Compositio Mathematica, Tome 92 (1994) no. 3, pp. 249-271. http://archive.numdam.org/item/CM_1994__92_3_249_0/
[1] On S-integral solutions of the equation f(x) = ym. Acta Math. Acad. Sci. Hungar. 44 (1984) 133-139. | MR | Zbl
:[2] On a diophantine equation involving quadratic characters. Compositio Math. 57 (1986) 383-403. | EuDML | Numdam | MR | Zbl
:[3] On the equation ym = f(x). Acta Arith. 9 (1964) 209-219. | EuDML | MR | Zbl
:[4] On the equation ym = f(x). Acta Arith. 31 (1976) 199-204. | EuDML | MR | Zbl
and :[5] On the 2-primary part of a conjecture of Birch-Tate. Acta Arith. 43 (1983) 69-81 and Corr., to appear. | EuDML | MR | Zbl
:[6] Connections between B2,χ for even quadratic characters χ and class numbers of appropriate imaginary quadratic fields. I. Compositio Math. 75 (1990) 247-270. | EuDML | Numdam | MR | Zbl
:[7] On some new congruences between generalized Bernoulli numbers. I. Publications Math. de la Fac. des Sci. de Besançon, Theorie des Nombres, Années 1990/ 1991. | Zbl
:[8] On the diophantine equation 1k + 2k + ··· + xk + R(x) = y z. Acta Math. 143 (1979) 1-8 and Corr. 159 (1987) 151-152. | MR | Zbl
, and :[9] Introduction to Cyclotomic Fields. Springer-Verlag, Berlin, Heidelberg, New York, 1982. | MR | Zbl
:[10] The Iwasawa conjecture for totally real fields. Ann. of Math. 131 (1990) 493-540. | MR | Zbl
: