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§ 0. Introduction

In 1923 Schur proved that the diagonal entries a = ( a 1, ... , an) of a Hermitean
n x n-matrix with eigenvalues r = (r 1, ... , rn) are contained in the convex hull of
Sn . r, where Sn is the symmetric group acting onCn by permutation of coordinates.
31 years later Hom proved that each point of the convex hull can be obtained this
way. In 1973 Kostant published a seminal paper in which he interpreted the Schur-
Hom result as a property of adjoint orbits of the unitary group and generalized it
to arbitrary compact Lie groups. More precisely, he proved that for an element X
in a maximal abelian subspace t in the Lie algebra t of a compact Lie group K one
has

where prt : t --+ t is the orthogonal projection (w.r.t. the Killing form) and W is
the Weyl group associated to the pair (tc, tc). In turn Atiyah and, independently,
Guillemin and Sternberg, in 1982 gave an interpretation of Kostant’s theorem as
a special case of a theorem on the image of the momentum map of a Hamiltonian
torus action. In that context one has a symplectic manifold (M, w) and a smooth
action o,: G &#x3E; M --+ M of a Lie group G on M which preserves the form w. The
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space C°°(M) carries a Lie algebra structure given by the Poisson bracket

where the vector fields Xi and Xh correspond to df and dh under the isomorphism
T M - T*M coming from w. Moreover Q induces a natural homomorphism Q
from the Lie algebra g of G into the Lie algebra V(M) ôf vector fields on M.
The action Q is called Hamiltonian if there exists a Lie algebra homomorphism
: g --&#x3E; C°°(M) such that

The a(X) are called Hamiltonian functions. Given À one defines the moment map

The Atiyah-Guillemin-Stemberg (AGS) theorem then reads: If M is compact and
T is a torus, then

where Fix(M) is the set of T-fixed points in M.
In Kostant’s situation the symplectic manifold is the adjoint orbit which can

be identified with a coadjoint orbit carrying a natural symplectic form. The group
is the maximal torus T in K with Lie algebra t and the action is the coadjoint
action. Then it is not hard to see that the corresponding moment map is the natural
map prt* : t* --+ t* restricted to the coadjoint orbit. Some standard Lie theoretic
arguments show that for M = Ad* (K). a the set Fix(M) coincides with the Weyl
group orbit of a.

Since complex flag manifolds can be viewed as certain compact coadjoint orbits,
the AGS-theorem proves convexity properties of complex flag manifolds. On the
other hand Kostant had proved analogous results for real flag manifolds. In order to
give a symplectic interpretation for those, Duistermaat in 1983 proved a convexity
theorem for fixed point sets of involutions T on symplectic manifolds which satisfy
7*W = -CJ.

All the symplectic convexity theorems mentioned so far were proved applying
some Morse theory to a generic component function of the moment map. At
that point it was essential to assume that the symplectic manifold was compact.
Nevertheless, using Kostant’s theorem Paneitz in 1984 and Olafsson in 1990 were
able to prove convexity theorems which can be interpreted as symplectic convexity
theorems for certain non-compact coadjoint orbits (with involution). It tums out
that it actually is enough to assume that the moment map 4l is proper, i.e., the
inverse images of compact sets are compact. To prove that, one first proves a local
convexity theorem using a suitable normal form for Hamiltonian torus actions.
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Here by a local convexity theorem for a map W: X -- V from some space X to a
vector space V we mean the existence of a collection of closed convex cones Cz
in V with vertex T (x) and open neighborhoods U x of x in X such that
(0) W : Vz - Cx is an open map,

and

(LC) p - (()) n U x is connected for all u C U,.
The next step is to establish a very general principle (we call it the Lokal-global-
Prinzip) which shows that the local convexity theorem together with the propemess
always gives rise to a global convexity theorem. The basic idea for the proof of the
Lokal-global-Prinzip (which we borrow from the paper [CDM88] by Condevaux,
Dazord and Molino) is to factor the connected components of the fibers of to
obtain a quotient space X which is Hausdorff and locally homeomorphic to closed
convex cones thanks to (0) and (LC). Given a Euclidean metric on V one can use
the local homeomorphisms to define a metric on X via the length of curves. Then
the propemess of W guarantees the existence of shortest curves connecting two
points in a very similar way one proves the Hopf-Rinow theorem in Riemannian
geometry. When projected to V via T, these curves give straight lines from which
one easily deduces the convexity of (X).

This line of argument gives strengthened versions of the AGS-theorem as well
as the Duistermaat theorem. Moreover it has the advantage that in order to derive
Duistermaats theorem one no longer needs to essentially redo the proof of the AGS
theorem but only to establish the right local convexity theorem and then apply the
Lokal-global-Prinzip. When applied to coadjoint orbits the strengthened convexity
theorems, just as in Kostant’s case, yield an "abstract" convexity statement. In
order to give a "concrete" description of that convex image one again has to use
Lie theoretic arguments. The situation becomes more complicated for non-compact
coadjoint orbits because it is no longer clear that the convex image is spanned by
extreme points. In fact, it tums out that the image of the moment map which is
closed, convex and locally polyhedral is always a sum of the convex hull of its
extreme points and a convex cone which may be interpreted as the cone of limit
directions of the set. In terms of Lie theory the extreme points come up as a Weyl
group orbit whereas the limit cone is given by certain roots. As special cases one
finds Paneitz’s and Olafsson’s theorems.

So far we only considered torus actions. Examples show that one may have non-
convex images of the moment map for Hamiltonian actions of non-abelian groups.
On the other hand Kirwan showed in 1984 that for a compact Lie group Il with
maximal torus T the intersection of (M) C t* with a Weyl chamber t+ C t* C t*
(via the Killing form) is always convex. We show here that 1&#x3E;(M) is convex if
and only if ( M ) n t* is convex, a fact that has been proven in the special case of
projective unitary representations by Amal and Ludwig in [AL92]. We also give a
proof of a strengthened version of Kirwan’s theorem for non-compact manifolds
following ideas of [CDM88]. Here the crucial point is to construct a T-invariant
symplectic submanifold IVIF of M whose associated moment map tbT: MF - t*
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has an image which is dense in tP(M) n ti. Unfortunately (and contrary to an
assertion in [CDM88]) the map tPT in general is not proper on MF. But writing
MF as a union of sets on which it is and using the full generality of the Lokal-global-
Prinzip one can still prove the convexity Of I&#x3E;T(MF) and hence the strengthened
Kirwan theorem.

Kostant’s paper [Ko73] also contains convexity theorems for Iwasawa projec-
tions which recently have been given a symplectic interpretation in the context
of Poisson Lie groups by Lu and Ratiu ([LR91]). Similarly, convexity theorems
for non-linear projections appear in [Ne92] and [vdB86]. Whereas a symplectic
interpretation for the results from [Ne92] is available and will be discussed in
[HiNe93b], the non-linear convexity theorem due to van den Ban which also gen-
eralizes Konstant’s non-linear convexity theorem still lacks such an interpretation.

The authors thank the referee for many helpful comments and for pointing out
an error in a previous version of the manuscript.

The paper is organized as follows:

§ 1. Closed convex sets

§ 2. Local convexity theorems

§ 3. The "Lokal-global-Prinzip" for convexity theorems

§ 4. Hamiltonian torus actions

§ 5. Applications to coadjoint orbits

§ 6. Hamiltonian actions of compact Lie groups
In the first section we collect some results on closed convex sets in finite

dimensional real vector spaces. These results are mostly of an elementary nature
but nevertheless crucial for the rest of the paper. The main difficulty comes from
the fact that we also have to consider non-compact convex sets which are not as

simple as compact ones. 
In the second section we describe a local normal form for a Hamiltonian torus

action on a symplectic manifold and its moment mapping. This normal form then
leads directly to a local convexity theorem. To pave the way to Duistermaat’s
result, we also obtain a normal form which takes into account the presence of
an antisymplectic involution which anticommutes with the torus action. In this
case we also get a corresponding local convexity theorem. This section consists of
general symplectic geometry.

The third section is of a topological nature. It only depends on some lemmas
in Section 1. Here it is proved how one obtains a global convexity theorem from
a local convexity theorem under the assumption that the moment map is proper.
This result is at the heart of the paper.

In Section 4 we formulate the explicit convexity theorems for Hamiltonian torus
actions and some generalizations which we obtain by combining the "Lokal-global-
Prinzip" with the local theorem from Section 2. We also formulate a non-compact
version of Duistermaat’s Convexity Theorem which we also obtain by the "Lokal-
global-Prinzip".
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Section 5 contains the applications of these results in the simplest case, namely
for coadjoint orbits in the dual of a Lie algebra g. We call a coadjoint orbit admissible
if it is closed and its convex hull contains no lines. It tums out that this is a class of

coadjoint orbits where our results apply most naturally to the Hamiltonian action
of the adjoint group associated to a compactly embedded Cartan algebra t. We
obtain a complete description of the set of admissible coadjoint orbits for Lie
algebras which contain a compactly embedded Cartan algebra and the Convexity
Theorem for coadjoint orbits which applies to those includes the corresponding
well known result for compact Lie algebras and the Convexity Theorem of Paneitz
for Hermitean simple Lie algebras (even for Hermitean simple Lie algebras we
obtain a stronger result).

Having the non-compact version of Duistermaat’s Theorem at hand we also
obtain convexity theorems for coadjoint orbits associated to symmetric spaces.
Here we prove a result for general Lie algebras containing a compactly embedded
Cartan algebra and show how it specializes to Kostant’s Linear Convexity Theorem
for the Cartan decomposition of a semisimple Lie algebra and Olafsson’s Convexity
Theorem for irreducible regular symmetric spaces.

The last section contains the aforementioned strengthened version of Kirwan’s
Convexity Theorem for Hamiltonian actions of compact groups. These last two
sections rest on the results of Sections 1 and 4 but they are independent of each
other.

§ 1. Closed convex sets

Let V be a finite dimensional real vector space and C C V a closed convex set.

For x E C we define the subtangent wedge Lx( C) = R+ (C - x) (cf. [HHL89,
Ch. I]). Note that this set deserves to be called a wedge since it is a closed convex
cone in V. It follows immediately from the definition that

We say that a closed convex set C is locally polyhedral if for every x E C there
exists a neighborhood U such that u n c = u n (x + Lx(C)) and Lx(C) is
polyhedral. We remark that the condition that Lx( C) is polyhedral is superfluous
(cf. [Ne93f]). It follows from the condition that C is locally polyhedral. The edge
Lx( C) n - Lx( C) will be denoted by H x( C). For a closed convex set C we write
C* : = {w E V*: w (C) C R+} for the dual cone.

PROPOSITION 1.1.

(i) lim(C) := {v E V : C + v C C} is a closed convex cone in V.
(ii) H(C) := {v C V: C + v = C} is a vector subspace of V.
(iii) Let x E C and suppose that D is a convex cone in V with x + D C C. Then

D C lim(C).
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Proof. (i) It is clear that lim(C) is a closed convex set which is a subsemigroup
of V. This means that lim(C) is a closed convex cone.
(ii) is an immediate consequence of (i).
(iii) Let y E C and d E D. Then

for all t &#x3E; 0. As t goes to 0, we find that y + d E C, hence that C + D C C, i.e.,
D C lim(C). D

DEFINITION 1.2. Let C be a closed convex set. A subset F C C is said to be
extremal if tx + ( 1 - t)y E F, t E]O, 1[ and x, y E C implies that x, y E F.
A face is a convex extremal set, an extreme point is a point e E C such that

{e} is a face, and an extremal ray is a face which is a half-line. We note that, if C
is locally polyhedral, a point x E C is an extreme point if and only if the wedge
Lx( C) is pointed. We write Ext(C) for the set of extreme points of C and Rext(C)
for the set of extremal rays. Note that Ext(F) = Ext(C) n F holds for every face
F of C.

An exposed face F is a set F = le E C: w( c) = minw(C)}, where w E V* is a
linear functional which attains its minimum on C. It is clear that every exposed face
is a face and that every face of a face is a face. We also note that H(C) = H(F)
and lim(F) C lim(C) for every face F of C.
We write algint C for the interior of C relative to the affine subspace generated

by C and call this set the algebraic interior of C. D

LEMMA 1.3. Let C be a closed convex set. Then the following assertions hold:

(i) If a face F intersects the algebraic interior, then F = C.

(ii) Every face is closed.

(iii) Every face of minimal dimension is an affine subspace f + H (C) for every
f E F.

Proof. (i) Let f E F n algint(C) and c E C. Then there exists t &#x3E; 1 such

that c’ := c + t( f - c) E C. Then f = le’ + L--l e yields that c E F.
(ii) Let E denote the affine subspace generated by F. Then C n E is a closed convex
set containing F and F is a face of C nE. Since F generates E, it intersects the
algebraic interior of E fl C which is a dense subset. Thus F = E fl C by (i) and
therefore F is closed.

(iii) Let F be a face of minimal dimension in C. Then F is a closed convex
set without any faces of lower dimension. It follows in particular that F has no
exposed faces. In view of the Separation Theorem of Hahn-Banach, F is open in the
affine subspace it generates (otherwise we find non-trivial support hyperplanes),
and therefore F is an affine space.
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On the other hand f + H(C) C F holds for every f e F because f =
!(f+v)+!(!-v)forv E H(C).Hence F = f+H(C)followsfromv E H(C)
for every v E V with f + Rv C F. D

The following lemma is also contained in [Le80, p.41]. It is an immediate

consequence of Lemma 1.3.

LEMMA 1.4. The following statements are equivalent.
(1 ) C contains an affine subspace of positive dimension.
(2) -II(C) 0 {0}.
(3) The set of extremal points Ext(C) of C is empty. D

We define the set Ext(C) as the union of all faces of minimal dimension (cf.
Lemma 1.3(iii)). This is the set of the "most extremal points" of C. Note that
Ext(C) = Ext(C) if and only if H(C) = 101 (cf. Lemma 1.4).

PROPOSITION 1.5. Let C be a closed convex set. Then

Proof. The indusion " D " follows immediately from Proposition 1.1.
For the converse inclusion we first note that, since both sides are invariant under

translations with elements in the subspace H( C), we may factor this subspace and
therefore assume that H(C) = {0}. Then, according to Klee’s theorem ([Le80,
Satz 4.3])

To see that this implies the assertion, note that for every ray F == x + R+v E
Rext(C) we have that x E Ext(F) ç Ext(C) and v E lim(F) g lim(C). E

LEMMA 1.6. Let C be a closed convex subset of V. Then

Proof. For the first equality the inclusion "C" is clear. Suppose that y e C.
We identify V with Rn which we endow with the Euclidean scalar product. Let
x E C be a best approximation for y in C and w (z) : = ( z - y , z ) . Then o ( z - z ) &#x3E; 0
for z E C. Hence w E Lx(C)* and therefore y e x + Lx(C).

For the second equality the inclusion "C" is also clear since C C x + L,(C)
yields lim(C) C lim(x+Lx(C)) = Lx(C) for all x E C. Now let v E

nXEC Lx( C). Then, in view of the first equality,
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Hence v E lim(C). D

LEMMA1.7. LetE ç Candx E convE.ThenneEE(e+Le(C)) ç x+Lx(C).
Proof. First we assume that E = {XO,X1}’ Let y E C and v E Ly(C).

We note that t(C - y) C C - y for t  1 since tC + (1 - t)y C C. Hence
Ly(C) _ UnEN n(C - y). We identify V with a real Hilberf space. Then we find
in each of the closed convex sets n(C - y) a best approximation Vn = n( cn - y)
for v. Since the family n(C - y) is increasing and v is contained in the closure of
its union, it follows that vn - v.

Now let v e (xo + Lx0(C)) n (xi + LX1(C)), Then there exist sequences
en,en E C such that

Suppose that x = txo + (1 - t)x1 with t E [0,1]. Then

Thus (xo + Lxo( C)) n (x1 + (C» ç X + Lx( C).
For a general subset E C C, it clearly suffices to assume that E is finite since

x is already contained in the convex hull of a finite subset. Now we can use the
two-element case to argue by induction. D

PROPOSITION 1.8. Let C be a closed convex set. Then

and lim( C) = nXEfut(C) Lx( C).
Proof. The first equality is Proposition 1.5. To prove the second equality, we

write C’ for the right hand side and note that C ç C’ holds trivially because of
Lemma 1.6. Now C’ is a closed convex set and

So we only have to show that C = C’. If y = x + v with E C and v E lim(C),
then Rv C Ly(C) and therefore



137

Hence the first equality and Lemma 1.6 tell us that

so that the assertion follows from Lemma 1.7. D

Proposition 1.8 says that in order to calculate C it is enough to know lim(C)
and Ext(C). Moreover the second part tells us that in order to calculate lim(C),
we only have to know the subtangent cones Lx(C) in the most extremal points. It
follows in particular that the locally polyhedral set that is associated to any local
convexity data via the "Lokal-global-Prinzip" (cf. § 3), we only have to know
the local convexity data for the most extremal points. This will be useful in the
applications to coadjoint orbits in § 5.

In the remainder of this section we will deduce some results on convex sets

which will be useful in § 5 to describe the set of those coadjoint orbits to which the
Convexity Theorem from § 4 applies.

Let C be a closed convex set in V. We define

LEMMA 1.9. The set B(C) is a convex cone which satisfies

Proof. That B(C) is convex and invariant under multiplication with non-
negative scalars is trivial. Moreover since C + lim(C) = C, it is clear that every
element in B(C) must be non-negative on lim(C), i.e., B(C) C lim(C)*.

In view of Lemma 1.6, we have that lim(C)* ¿XEC Lx( C)*. Hence it

suffices to show that Lx(C)* C B(C) holds for all x E C to see that B(C)
contains algint (lim( C)) *. Here we use that a dense convex subset of a convex set
contains the algebraic interior.

If x E C, then C ç x + Lx( C), so that w E Lx(C)* implies that w( C) C
[w( x), 00[. Now Lx( C)* c B(C) and the lemma is proved. D

REMARK 1.10. To see that the cone B(C) need not be closed, let C := {( x, y) E
R2: y  exl. Then B(C) = {( 0, 0)} U {( À, J-l) : J-l &#x3E; 0, A  0}. D

PROPOSITION 1. 11. Let C be a closed convex set. Then the following are
equivalent:
(1) lim(C) is pointed.
(2) C contains no lines.
(3) intB(C) # QJ.
(4) C x {1} C V x R lies in a pointed closed convex cone.
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Proof. (1) c (2): This is part of Lemma 1.4.
(1) {:&#x3E; (3): This follows immediately from (1.1) and the fact that lim(C) is pointed
if and only if its dual cone is generating.
(3) =&#x3E; (4): To see that (4) holds, we have to show that the set

has interior points. The set D is a closed convex cone in (V x R)*. Let 7r: (V x
R) * --+ V * denote the restriction mapping. Then it is clear that 7r(D) = B(C). Let
d E algint(D) and K be a closed convex neighborhood of d in the affine subspace
generated by D. Then 7r( d) is contained in the algebraic interior of B(C) and 7r (K)
is a neighborhood of 7r( d) in B(C), hence also in V* since B(C) is generating by
assumption (3).

Suppose that D is not generating. Then dim D = dim V and D generates a
hyperplane in ( V x R)* which is mapped isomorphically onto V*. This contradicts
the obvious fact that {0} x R+ C D. Hence D is generating and (4) follows.
(4) :#&#x3E; (2): If C x {1} lies in a pointed closed convex cone, then it contains no
lines. D

In the following we call a mapping rp: X --+ Y between Hausdorff spaces proper
if it is closed and the fibers rp -1 (y) are compact (cf. [Bou71, Ch. 1, § 10, Th. 1]).

PROPOSITION 1.12. Let w E B(C). Then H(C) C kerca so that w factors to
a linear functional w on V/H(C). The following are equivalent:
(1 ) o E algint B(C).
(2 ) o E algintlim(C)*.
(3) w is proper on CI H(C) and w E B(C).
Proof. Since w is bounded on the vector space H(C), it vanishes on H(C),

i.e., H(C) C ker Li.
(1)  (2): This is a consequence of Lemma 1.9.
( 1 ) # (3): First we set C’ := C/H(C) C V’ := V/H(C). Let 7r: V’* x R - V’*
denote the restriction mapping and

as in the proof of Proposition 1.1 l. Then r (D) = B(C’) and therefore Jr ( int D ) =
7r(intB(C’)) since 7r is an open mapping and 7r(intD) is a dense convex subset
of B(C’). Hence there exists t E R with (w, t) E int D. Then t) E int C’ with
C’ : := cone(C’ x {1})*. Therefore this functional is proper on the pointed cone
C’, hence proper on the closed subset C’ x {1}. It follows that W is proper on C’.
(3) =* (2): If w is proper on C and E C’, then it is also proper on the closed
subset. + lim(C’). This means that b is a proper function on lim(C’), hence
w E int lim(C’)*. This property translates into w E algint lim(C)*. D

COROLLARY 1.13. For a functional w E V * the following are equivalent:
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(1) w E int B (C).
(2) o E intlim(C)*.
(3) w is proper on C and in B(C).
Proof. In view of Proposition 1.12, we only have to note that (1)-(3) are

false if B(C) has no interior points. On the other hand if B(C) has non-empty
interior, this is simply Proposition 1.12. D

The following simple lemma will be useful to check propemess of mappings
throughout the whole paper. Its proof is an easy exercise in topology.

LEMMA 1.14. Let X, Y, and Z be locally compact spaces and p: X --+ Y,
q: Y - Z continuous mappings such that q o p is proper. Then p is proper, the
restriction of q to p(X) is proper, and p(X ) is closed. 1:1

LEMMA 1.15. Let C C V be a closed convex set and c.p: V ---+ V’ a linear

mapping. Then the following are equivalent:
(1 ) cp c: C - cp(C) is a proper mapping.
(2) kerc.pnH(C) == {0}and there exists E algintB(C)such that kerp Ç ker W.
Proof. (1) =&#x3E; (2): If the restriction of p to C is proper, then cp(C) is closed.

Take w’ E algint B (p(C)) and set o : = w’ o c.p. Then ker cp C ker w .
We claim that w E algint B(C). That E B(C) is clear. We write C as

C = H(C) x C1, where V = H ( C) X VI is a corresponding direct decomposition.
Since p is proper on H(C), we have that ker p n H (C) = {0}, and therefore there
exists a direct decomposition V’ = p (H(C)) x Vl with c.p(C1) C Vl. Since Ci
is closed in C, the restriction of p to Ci is proper, hence p(Ci ) is closed and,
moreover, the linear functional w’ is proper on Ci by Corollary 1.13. We conclude
that w ICI is proper, i.e., that w E algint B(C) (Proposition 1.12).
(2) =&#x3E; (1): Again we write C as C = H(C) x Ci. If w E algintB(C), then is
proper on CI (Proposition 1.12) and since w factors to w’ C V* with w = w’ o p,
we. conclude with Lemma 1.14 that p is proper on C1 .

In view of the fact that cp(C) = p (H (C)) x (p(CI), where p is injective on
H(C), the mapping p is equivalent to c.p IH(c) x c.p ICI’ Both mappings are proper,
so the same holds for c.p. D

PROPOSITION 1.16. Let C be a closed convex set in V and cp: V - V’ linear
such that cp is proper on C. Then the following assertions hold:

(i) If C is locally polyhedral, then p(C ) is locally polyhedral.
(ii) Ext (p( C)) = c.p( Ext(C)) .

Proof. (i) First we note that p(C) is closed because p is proper on C. Let
x’ E C’ : := cp(C) and x E C with x’ = p(z). Further let U’ be a compact
polyhedron in V’ which contains x’ in its interior. Then the set U := c.p-1( U’) n C
is compact and convex. Moreover, the set c.p-1 (U’) is locally polyhedral so that the
same follows for U because C is locally polyhedral. Thus U is a polyhedron. Now
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U’ = p( U) is the image of a polyhedron, hence a polyhedron. This shows that C’
is locally polyhedral.
(ii) Let E Ext (p( C) ) . Then the compactness of p-1 (x’) fl C shows that this set
contains an extreme point x. Then p( x) = x’ and since p-l (x’) fl C is a face of
C, the point x is even extremal in C. D

The following lemma will be needed for the Local Convexity Theorem in § 2.

LEMMA 1.17. Let a : V -- V’ a linear mapping of finite dimensional vector
spaces and C C V a polyhedral cone. Then a: C ---+ à( C) is an open mapping.

Proof. We prove this lemma by induction over dim C. It is clear if dim C = 0.
If C is not pointed and H(C) : := C n -C, then V = H(C) x VI. We set
V" := V’/ c, (H (C». Then a induces a mapping a’: VI - V" which maps C n VI
onto (a(C) + V") IV". If this mapping is open, then a is also open because
V’ = V" e a(H( C)) and the restriction of a to H(C) is trivially an open mapping
onto its image. Hence we may w.l.o.g. assume that C is pointed.

Let C = ¿eEE R+e, where E is a finite set. If U C C is a neighborhood of 0,
then there exists for each e E E a Àe &#x3E; 0 such that Age E U. Then a(U) contains
E,,CE[O, Àe]a( e) which is a neighborhood of 0 in a(C).

To see that a is also open in other points of C, let E C B {0}. Then there
exists a neighborhood U of x with U n C c z + Lx( C). Since the cone Lx( C) is
polyhedral with non-trivial edge, the mapping

is open. Hence a is open in x because a(C) is also a polyhedral cone. This proves
the assertion in the case where C is pointed, hence the proof is complete. D

We note that it is false in general that a linear map which maps a closed convex
cone Wl onto another closed convex cone W2 is an open mapping.

EXAMPLE 1.18. The following counterexample is due to J. D. Lawson. We set

Let -1: [0 @ 1  R6, t  (cos 27rt,t cos 27rt, sin 27rt, tsin27rt, 1, t). Then,([O, 1])
is a compact set whose convex hull Il does not contain the origin. Let

Then 7r maps the convex cone C : = IR+ K onto IR+ z (K) = C. But 7r([0, l]K) is
not a neighborhood of 0 in C and [0, 1 ] Ti7 is a neighborhood of 0 in C. D

9 2. Local convexity theorems

LEMMA 2.1. Let (M, w) be a symplectic manifold, : T x M --+ M a Hamil-
tonian action of a torus T on M which is given by the Lie algebra homomorphism
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À: t --+ COO(M), and mo E M. Then there exists a T-invariant neighborhood
U C M of T,mo, a subtorus Tl of T and a symplectic vector space V with the
following properties:

(i) T = To x Tl, where Tp = (T,,)o is the connected component of the stabilizer
T,no 

(ii) There exists a symplectic covering of a T-invariant open subset U’ of Tl x
ti x V  T* (Tl ) x V onto U under which a gets transformed into the action

where
7r: To - Sp(V) is a linear symplectic representation.

(iii) If, in addition, T is an antisymplectic involution on M, i.e., 7*Lj = -W,
T(mo) = mo, and all Hamiltonian functions À(X), X E t are T-invariant,
then the covering in (ii) can be chosen T-equivariant, where Tacts on T* (Tl ) X
V by

and 7v is an antisymplectic involution on V.
Proof. (i) Let mo E M and To = (Tmo)o denote the connected component

of the stabilizer T mo’ The group To is a subtorus of T, hence there exists another
subtorus Tl such that T  To x Tl. Note that Tmo = Tor, where F := (Ti nT,,O)
is a finite group, and the orbit T.mo is isomorphic to Tlff.
(ii), (iii) To treat (ii) and (iii) simultaneously, let K T if we are in the situation,
where there is no T. Otherwise let Tact on T by T.t := ’ and form the semidirect
product A" := Txt {1, T}. To see that this leads to an action of Ik on M, let X E t.
Then À(X) o T = 7-*À(X) = À(X) by assumption. Hence T*dÀ(X) = dÂ(X). If
&#x26;( X) denotes the corresponding Hamiltonian vector field with ÍÕ"(X)W == -dÀ( X),
then T*w = -o yields that 7.à(X) = -&#x26;(X). We conclude that T(t.m) =
t-1.T(m) for t ET. Hence we obtain an action of Il on M such that k*w E ( +o )
for all k E K.

To obtain the normal form for our Hamiltonian torus action, we will use Theorem
41.2 in [GS84]. We set V := T mo(T.mo).L /Tmo(T.mo). This is a symplectic vector
space which carries a linear action 7r of the group Kmo, where the involution
TV := 7r( T) is antisymplectic.

Let Ml := T*(Tl) x V  Tl x il x V with the action of T given by

and endowed with the natural symplectic product structure W1. The finite group 1
acts on Ml by
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the orbit mapping p: Mi - Ml := M1/f is a finite covering, and there exists a
symplectic structure W1 on M1 such that p*w1 = W1. Moreover, since li permutes
the r-orbits in Ml, the action of li on Ml induces an action of Il on Mi given
by k.p(m) := p(k.m) for m E M1. This action is Hamiltonian for T and r*.w1 =
-W1.

The stabilizer in T of the point [(1, 0, 0)] in Ml coincides with Tmo, and the
linear action of Tmo on the tangent space Tmo(MI) is equivalent to the action on
Tmo(M). Hence Theorem 41.2 in [GS84] provides a symplectic isomorphism of a
T-invariant neighborhood of p (Ti x {(0,0)}) with a T-invariant neighborhood of
T.mp in M which is T-equivariant. This proves (ii).

To see that (iii) can also be obtained along the same way, we first note that
the proof of the equivariant Darboux-Weinstein Theorem ([GS84, § 22, p.155])
carries over almost word by word to an action of a compact group Il acting on
a symplectic manifold (M, w) such that there exists a continuous homomorphism
E: K --+ {1, -1} with k*w = E(g) for all k E K.

Thus we also obtain the appropriate generalization of the Isotropic Embedding
Theorem ([GS84, Th. 39.1]) to this more general setting. Finally the argumentation
in [GS84, pp.324-326] shows that Theorem 41.2 in [GS84] remains true for our
group K = Txt{1,T}. Therefore the local isomorphism from above can also be
chosen r-equivariant. This proves (iii). D

Normal forms as in Lemma 2.1 are a standard tool in symplectic geometry. The
second part of Lemma 2.1 conceming the normal form with involution is for the
case T = {1} due to Meyer ([Me81]) and in the case where mo is a fixed point
of T due to Duistermaat ([Dui83]). It follows immediately from the normal form
that the manifold Q of T-fixed points in M is a submanifold which is also due to
Meyer ([Me81]).

The application of the equivariant version of the Darboux-Weinstein lemma for
compact groups which do necessarily preserve the symplectic structure is in fact a
combination of the cited result in [GS84] and of Lemma 2.3 in [Dui83].

LEMMA 2.2. Let a be the Hamiltonian action as in the lemma above and 7: To -
Sp(V) the corresponding symplectic action of the torus To on the symplectic vector
space (V, wv). Then there exists a complex structure I on V such that (v, w) :=
wv (Iv, w) defines a positive definite scalar product on V. Then V = Ef)aEJ’v Va,
where Va := tv E V: (’dY E to)Y.v = a(Y)Ivl and Pv := fa E tô: Va {0}}.
The moment map for u is given by
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If, in addition, TV is an antisymplectic involution on V which leaves all the
Hamiltonian functions À(X)(v) := !w(X.v,v), X E to invariant, then TV is

antilinear, i.e., it anticommutes with I, and it leaves all subspaces Va invariant.
Proof. We decompose the action into two parts

and

It follows from [GS84, Th. 41.2] that the moment map for the action of T is,
up to a constant, the sum of the moment maps corresponding to the Hamiltonian
actions ul and u2 . The first one is the action by left multiplication on the cotangent
bundle, hence the moment map is simply given by the projection T*(T1) --+ t* C t*,
where we used the splitting t = to (B ti to identify t* with a subspace of t*.

In the second case the corresponding moment map is given by

where ov is the symplectic form on V. We can choose a complex structure I: V 
V such that the form (v, w) -+ wv (Iv, w) defines a positive definite scalar product
on V which is invariant under To and ry. This follows by a slight generalization
conceming the presence of Ty of the argument given in ([Ne93a, Lemma II.31]).
Since 7* wv = -wy, the mapping 7v anticommutes with the complex structure I.

There is a finite set Pv of linear functionals cx E tô and a decomposition
V = (D,,, Ya which is orthogonal with respect to wy(J.,.) of V, where

Since Tv anticommutes with I and the action of to, it leaves the subspaces Va
invariant. Then

for Va E Va gives us the corresponding moment map for the second action as
v H z LaEPv IIval12a. Composing these two moment maps we get the lemma. D

THEOREM 2.3. (The local convexity theorem for Hamiltonian torus actions)
Let (1: T x M ---+ M be a Hamiltonian action of a torus T on a symplectic manifold
M and mo E M. Then there exist an arbitrarily small open neighborhood U of
mo and a polyhedral cone C mo C t* with vertex O (mo) such that the following is
true:

(i) O (U) is an open neighborhood of 4) (mo) in Cmo.
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(ii) 1&#x3E; : U Cmo is an open map
(iii) 1&#x3E;-I(1&#x3E;(u)) nUis connected for all u e U.
(iv) If to is the Lie algebra of the stabilizer To of mo, then C mû = O(mo) +

tol + cone Pv, where Pv is the set of all t-weights on the vector space
V = Tmo(M).L /Tmo(M) as described in Lemma 2.2.

If, in addition, T is an antisymplectic involution on M which leaves all Hamil-
tonian functions associated to the action of T invariant, then the assertions (i) and
(ii) of the proposition remain true for the manifold Q := {mE M: T(m) = m} of
fixed points of T and the same cones Cm, m E Q.

Proof. We take the local coordinate representation of the moment map in a
neighborhood ?,f = Tl x Bt* 1 x Bv, where Bt* 1 and Bv are small neighborhoods
of 0 in ti and V respectively. We define the polyhedral cone Cno = O(mo) +
ti + cone Pv, where cone Pv denotes the cone generated by the finite set Pv =
{al, ..., an}’ Note that this definition is compatible with (iv). We decompose 1&#x3E;
in two maps ’Pl: (t1, 13, v) - (13, (IivaIl2)) and

such that &#x26; = p2 0 pi + q&#x3E;( mo). The map c, : U - Et; X (R+)n satisfies the
assertions, so that we only have to check this for the linear map

This is a linear mapping between polyhedral cones, and therefore the openness of
;P2 follows from Lemma 1.17. That inverse images of points are connected follows
from the fact that they are intersections of affine subspaces with the cone (R +)n,
hence convex.

Now let us assume that we have, in addition, an antisymplectic involution with
the above stated properties. We have already noted in Lemma 2.2 that the subspaces
V,,, are invariant under T and that T anticommutes with the complex structure. This
means that T defines a complex conjugation on each space Ya with respect to the
subspace Ve := tV EVa: T( V) = V}. We choose the neighborhood Bv in V
such that it is a sum of circular r-invariant neighborhoods BVa of 0 in Ya. Then
it follows from 7. (t 1, , V) = (t - 1 , , 7v. v) that 4) (U) == q&#x3E;(U n Q) holds, hence
that (i) is satisfied for UQ := U f1 Q. It also follows from the special choice of U
that oi lu, is open, hence that (i) and (ii) remain true for the restriction (D IUQ’ D

In général (iii) is false for the submanifold Q on M. This comes from the fact
that the vector space Ya is a real form of the complex vector space Va. Hence the
spheres in Va+ are disconnected if Ya is a one-dimensional complex vector space.
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§ 3. The "Lokal-global-Prinzip" for convexity theorems

In this section we prove a general theorem that allows to pass from a local convexity
theorem to a global one if the convex sets involved are of polyhedral type. The
material of this section is to a large extent a reworking of [CDM88].

DEFINITION 3.1. Let X be a connected Hausdorff topological space and V a
finite dimensional vector space. A continuous map ’11: X ---+ V is called locally
fiber connected if for each x E X there exist arbitrarily small neighborhoods U of
x such that

(LC) ’11-1 (’11 ( u)) nUis connected for all u E U.
If IQ: X - V is locally fiber connected we define an equivalence relation - on

X by saying x N y if ’11 ( x) = BII (y) and and y belong to the same connected
component of P - 1 (IP (x». The topological quotient space X := XI - is called
the W -quotient of X. The quotient map will be denoted by 7r: X - X and the map
induced on X by by : X - V. For x E X we write Ex := 7r-1(x) == {y E
X : y N x} for the equivalence class of x. D

PROPOSITION 3.2. Let : X V be a locally fiber connected map. Suppose
that BII is a proper mapping, i.e., ’11 is closed and the sets ’11-1 ( V ), v E V are
compact. Then the following assertions hold:

(i) The fibers ’11-1 ( V ) are locally connected.
(ii) iP- - 1 (v) is finite for any v e V.
(iii) For every x E X there exists an open neighborhood Ux satisfying (LC) such’

that in addition U x is relatively compact and U x intersects only one component

Proof. (i) This follows from (LC).
(ii) Let v E Y. Since the fiber W -1 ( v) is compact by assumption and locally
connected, it has at most finitely many connected components. This means that
W - 1 ( v) is finite.
(iii) Let Il be a compact neighborhood of w( x) in V. Then W-1 (K) is a compact
set since is proper ([tD91, p.373]). According to (ii), the fiber T-1 (,F(X»
consists of finitely many compact sets. Hence the fact that we find U x arbitrarily
small satisfying (LC) implies (iii).

DEFINITION 3.3. Let : X V be a locally fiber connected map. A map
x 1--+ Cx which associates to each point in x E X a closed convex cone Cx with
vertex W ( x) in V is called local convexity data if for each x E X there exists an
arbitrarily small open neighborhood Ux of x such that

(0) W : Ux -j Cx is an open map.

(LC) W -1 (w ( u )) n U x is connected for all u E Ux. D
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REMARK 3.4. (i) A convex cone is uniquely determined by its intersection with
a neighborhood of its vertex. Therefore the Gx are uniquely determined once the
Ux are fixed. In fact, more is true. If U’x C Ux is an open neighborhood of x, then
W ( U§ ) still generates the same cone because of (0). Thus we actually have a map
x  Gx which does not depend on the choice of the neighborhoods Ux.
(ii) The concept of local convexity data is not the most general one might face in
this context, since it does for instance not model a spherical ball locally. D

LEMMA 3.5. Let ’11: X  V be a locally fiber connected map with local
convexity data (Gx)xEX. Suppose that W is proper. Then the following assertions
hold:

(i) C x only depends on the equivalence class Ex of x, so we have a well defined
mapping Jr(z) - C(z&#x3E;.

(ii) For every x E X there exists an open relatively compact neighborhood U1T"(x)
of Ex such that U1T"(x) satisfies (LC).

(iii) X is a Hausdorff space.
(iv) IfU;:.(x) is chosen as in (ii), then Ür(x) = 7r (U7r(x)) is a neighborhood of7r( x)

in X such that ’11: U1T"(x) - C1T"(x) is a homeomorphism onto its open image.
(v) Suppose that  -1 ( v) == {7r( Xl), ... , 7r( xm)}’ Then there exist pairwise dis-

joint neighborhoods Ui of Xl := 7r(xi) and convex open neighborhoods Bl of
W(liii ) such that Bl n C;l == ’11(Ul)’

Proof. Let (Ux )xEX be a family of open sets satisfying (0) and (LC) which in
addition are locally compact and U x intersects only one component of ’11-1 ( W ( z ) )
(Proposition 3.2(iii)).
(i) Fix a v E ’11(X).Then, for x E ’11-l(V) and y E u, n W (v) we claim
that Cy = C,. That Cy 9 Cx follows from (ii) since a neighborhood of y in Cy
is contained in Cx. On the other hand the fact that ’11 1 Ux is an open mapping
yields that there exist arbitrary small neighborhoods of y which are mapped onto
neighborhoods of x in Gx. Hence Cx C Gy.

Therefore the map x  Cx is locally constant on T ( v ) and hence constant
on the connected components of ’11 -1 ( V ).
(ii) The Ux form an open covering of the compact set ’11 -1 (W (z )) . Thus we can
find a finite subcovering. The compactness of Ex shows that Ex is covered by
finitely many of the Uy, y E Ex say U1,..., Uk, where Uj = UYJ’ The set

is an open neighborhood of v in C1r(x) since 7r(Ui n Uj ) is an open neighborhood
of r(x) if Ex n Ui n Uj :f 0 and iP-: 7r(Uj) --+ C1r(x) is an open mapping. Similarly
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we may now choose a convex open neighborhood B1T"(x) of 7r(x) E V such that

We use !17r(x) to reduce the Uj in size via Vj := Uj n w-1(!17r(x)) and define
U7r(x) = Uj=l Uj. Note that, according to the relative compactness of the sets Ux,
this set is relatively compact.

To prove (ii), we have to show that for every E U7r(x) the set W-1 (w( u)) n
U7r(x) is connected.

First we note that for u E Uj we have

It follows in particular that these sets are connected because the Uj satisfy hypoth-
esis (LC).

To prove the assertion, we also note that for each u E U1r(x) and each pair i, j
with Ex n ui n u. 0 0 we find a ui j E Ui n Uj with w( u) = w( Uij). This shows
that ui j E Uf n Uj and hence

The connectedness of Ex shows that for any pair i, j we may find a sequence
i = i1,..., i m = j such that Ex n ui, n Uir+ 1 ’1 0 for r E {l,..., m - 1} and
hence, by the argument just made, also

Now (ii) follows since

and each set Uj n ’11 -1 (’11 ( u )) is connected.
(iii) In view of [tD91, p.376], we have to show that - is a closed equivalence
relation on X.

Let (Xi, Yi)iEI be a net with Xi "-i Yi converging to (X, y ) in X x X. We have
to show that x N y. We choose U7r(x) as in (ii). Then the construction of the Uj
shows that U7r(x) is relatively compact and U7r(x) intersects ’11-1 (’11( x)) in Ex (cf.
Proposition 3.2(iii)).

We may w.l.o.g. assume that xi E U7r(x) holds for all i E I. If there exists

an io e I such that yi C U7r(x) whenever i &#x3E; io, then y = lim yi e U7r(x) and
V (y) = ’11( x), so that
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which yields that y - x. 
Otherwise there exists a subnet ( i3 , Yi) )jEJ with Yi) fi. U1r(x)’ Then we may

w.l.o.g. assume that y, e U1r(x) for all i e I. Since Exi, is connected and it contains
xi and Yi, we find zi e , n âU1r(x)’ Passing to a subnet, we may assume that zi
converges to an element z e âU1r(x)’ Then it follows as above that z E Ex n âU1r(x)
contradicting the fact that Ex lies in the open set U7r(x)’ - 

-

(iv) We note first that the map is continuous. But its restrictions to any of the 7r(Uil)
are also open maps according to hypothesis (0), whence the map is also open. Thus
in order to prove the claim, it only remains to show that the map is injective. But we
know thatU1r(x) n W-1 (W ( u) ) is connected for all u E U1r(x)’ So if W ( ui ) = w( U2)
for U1, u2 E U1r(x), then we see that U1 r-..J U2, whence r(ui) = 7r(U2)-
(v) We repeat the construction from the proof of (ii) for all the x 1, ... , Xm and
set i1t := 1r(U1r(X)). Choosing the neighborhoods of the Exi at the beginning of
the construction small enough we may, according to (iii), assume that the Ul are
pairwise disjoint. Now the assertion follows from the convexity of the set !11r(x)’ D

DEFINITION 3.6. Let W : X - V be a locally fiber connected map. We call a
continuous map -y: [0, 1] --+ X a regular curve connecting xo and if -i(i) = Xi i
for 1 = 0, 1 and 0 1 is piecewise differentiable. D

REMARK 3.7. Let W : X --+ V and (C,),Ex be as in Lemma 3.5. Since X
is connected and locally is a homeomorphism onto a connected open subset
of a convex cone, any two points in X can be connected by a regular curve. We
define d ( , y) to be the infimum of the lengths ( o 1) of all the curves 0 1
with 1 a regular curve connecting x and F. Here the length of a curve [0, 1] --+ V

is calculated with respect to an arbitrary but fixed Euclidean metric dv on V.
Obviously d is symmetric and satisfies the triangle inequality. Moreover it is clear
that dv (IP (î), ())  d(x, F). E

PROPOSITION 3.8. Let W: X - V be a locally fiber connected map with local
convexity data (CX)XEX and dv a Euclidean metric on V. Suppose that IF (w( x))
is compact for all x e X . Then

(i) d: X x X  R is a metric.

(ii) The metric d defines the topology of X.

Proof. (i) In view of Remark 3.7, it only remains to show that d(x, fi) = 0
implies î = y. Thus we assume that d(x, F) = 0. Then := W(S) IQ(F) and
since X is Hausdorff we find finitely many disjoint open sets Ul in X covering
the finite set iP- - 1 (v) in such a way that each contains only one element Îl of
 -1 ( v ) . Moreover, using Lemma 3.5(iii), we may assume that each () contains
the intersection of C;;l with an s-ball around Xl. Thus any regular curve 1 in X
which starts at î == Xlo and leaves Ulo satisfies 1(P o -y) &#x3E; E. In other words, any
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regular curve y connecting x and which satisfies l(W o -y)  E has an image
completely contained in Ulo’ This shows that 1 = F.
(ii) Fix an x E X and recall from Lemma 3.5 the homeomorphism

Note that the convex set !11r(x) is a metric space with respect to the metric du.
We show that (*) is an isometry with respect to the metrics d and dv. If now
Yl,fh E U7r(x) and L is the straight line connecting ( 00FFl ) and (jh), then the
inverse image of this line in U1r(x) is a regular curve 1 with

Since we have already remarked that is a contraction with respect to d and dv,
this proves our claim about (*). But since dv defines the topology of !17r(x) this
proves also (ii). D

LEMMA 3.9. Let BII: X - V be a locally fiber connected map with local
convexity data (Cx )xe x and dv a Euclidean metric on V. Suppose that P is proper.
Then for any x E X and any r E R+ the ball Br(x) := (§i E X : d(x, y) S; T) is
compact.

Proof. It follows from Proposition 3.8 that Br ( x ) is closed. Its image under
is contained in the closed ball B, (BII ( X )) of radius r about W(z ). Since ’Q is
proper and X is Hausdorff, W is proper, and therefore Br(x) is compact. D

THEOREM 3.10. (The "Lokal-global-Prinzip" for convexity theorems) Let
’11: X - V be a locally fiber connected map with local convexity data (CX)XEX,
Suppose that is proper. Then (X ) is a closed locally polyhedral convex subset
of Y, the fibers W - 1 (v) are all connected, : X - W (X) is an open mapping, and
Cx = BII (x ) + Lw(x) (W (X)) holds for all x E X.

Proof. Pix XO,X1 E X and set c : := d(XO,X1)’ Then for any n E N there
exists a regular curve ln connecting 10 and il with 1 ( W 0 qn )  c + 1) . Let xi/n 1/2
be the midpoints of the curves -in. This means that the pieces of ln from xo to

F ))§ and from î(n) to x have equal length when projected via W . These midpoints1/2 1/2
obviously are contained in the ball B(2c, xo) which is compact and hence they
have an accumulation point X1/2’ This point satisfies

We repeat this process for the pairs of points (xo, Xl/2), (X1/2’ Xl) to obtain points
X1/4, X3/4 satisfying
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Inductively we find points - for 0  n  2"z such that

Thus we can extend the map n/2m  Xn/2m to a continuous map
with

This means that, if dv denotes the metric on V, locally we have

which can only happen if W o q is a straight line. Thus 0 , actually is the straight
line connecting w(xo) and W(X1) which proves the convexity of W(X) = W(X).

Since the image of a proper map is closed by definition, it only remains to
show that the W -1 ( v ) are all connected. To show this, it is enough to show that
is injective since the equivalence classes of N are connected. So we assume that
W(îo) = T(il). We construct a regular curve q connecting xo and x 1 as in the
previous paragraph. Then 0 = dv ( o (0), o ,( 1)) = c = d(lo, dl) so that
XO==x1.

In view of what we have already shown, is a homeomorphism X - W (X)
because it is continuous, injective, and closed. According to Lemma 3.5(iv), the
projection 1r: X ---+ X is an open mapping, hence the same is true for W = W o 7r.

To prove the last assertion, we first note that Cx C F(x) + Lw(x) (W(X))
follows from the fact that W(X) contains a neighborhood of ’Q (x) in Cx . Since, on
the other hand, this neighborhood is also a neighborhood of x in W(X), equality
follows. D

COROLLARY 3.11. Let V be a finite dimensional real vector space and X C V
a closed connected subset such that for each x E X there exists a neighborhood
U x of x in V and a closed convex cone ex C V with vertex x such that Ux n X =
u, n Cx. Then X is convex.

Proof. The inclusion mapping W : X --+ V is proper because X is closed, and
since it is injective, the assumption on X shows that W is a locally fiber connected
map with convexity data (C x )XEX, Hence the assertion follows from Theorem
3.10. D

§ 4. Hamiltonian torus actions

The following theorem is a strengthened version of the convexity theorem proved
by Atiyah (cf. [At82]) and, independently, by Guillemin and Sternberg (cf. [GS82]).
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THEOREM 4.1. (The convexity theorem for Hamiltonian torus actions) Let M
be a connected symplectic manifold, T a torus, and J-l: T x M - M a Hamiltonian
action of T on M such that the corresponding moment mapping : M - t* is

proper. Then the following assertions hold:
(i) 4) (M) is a closed locally polyhedral convex set.
(ii) : M - .p(M) is an open mapping.
(iii) The inverse images ofpoints in .p(M) are connected.
(iv) Each extreme point f of tb (M) is of the form (x) for some T-fixed point

xEM.

(v) If to is the Lie algebra of the stabilizer of m in T, then L( m) (lll(M)) =
tol + cone Pv, where Pv is the set of all t-weights on the vector space
V := Tm(M)1-/Tm(M) as described in Lemma 2.2.

Proof. This follows immediately from Theorem 2.3 and Theorem 3.10. D

COROLLARY 4.2. Let T be a torus and j: A --+ T a homomorphism of Lie
groups. Let further J-l be a Hamiltonian action of T on the connected symplectic
manifold M and MA the corresponding Hamiltonian action of A on M. Suppose
that the moment mapping .p A: M -&#x3E; a* is proper. Then

(i) (DA (M) is a locally polyhedral convex set.
(ii) The inverse images of points in .p A (M) are connected.
(iii) Each extreme point f of  A(M) is of the form .p A( x ) for some A-fixed point

xE M.

Proof. Let q: t* - a*,f ..-+ f o dj(1). Then (DA = q 0 4) T. Then the
propemess of .pT follows from Lemma 1.14. Hence Theorem 4.1 applies to the
action of T on M. Moreover Lemma 1.14 shows that the restriction of q to .pT(M)
is a proper mapping. Hence (DA(M) = q(.pT(M)) is a locally polyhedral convex
set by Proposition 1.15. This proves (i).

To see that (ii) also holds for .p A (M), let a E .p A (M). Then q-l (a) n .pT( M)
is a closed convex set, hence connected. To see that the set

is also connected, suppose that P Al (a) = Fi U F2 is a disjoint union of closed sets.
Then the fact that WT has connected fibers yields that the sets F1 and F2 are PT-
saturated. Thus 4lT(Fi ) and (DT(F2) are disjoint closed subsets of the connected
set q-1 ( a ). We conclude that one of these sets is empty, hence either Fi or F2 is
empty and consequently * 4 1 (a) is connected.

Finally, we use Proposition 1.15 to see that

Thus, if a is an extreme point of 4)A(M), there exists an extreme point â of
’0 T (M) with îi 1,, = a. Using (iii) foro T (M), we find a T-fixed point x e M with
PT( x) = à. Then a = P A (x ) and x is also fixed by A. 1:1
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In some cases one only has a Hamiltonian action of A which extends to an action
of the torus T on M which is symplectic. In this case the following proposition is
helpful because it shows that the action of T is automatically Hamiltonian in such
a case.

PROPOSITION 4.3. Let T be a torus and j: A ---+ T a homomorphism of Lie
groups. Suppose that u: T x M - M is a symplectic action of T on the connected
simply connected symplectic manifold M such that the action a o ( j x idm) of A
is Hamiltonian. Then a is Hamiltonian.

If, in addition, j(A) is dense in T and T is an antisymplectic involution of
M such that all Hamiltonian functions associated to the action of A on M are
invariant under T and T has at least one fixed point, then the Hamiltonian functions
associated to the Hamiltonian action of T are also invariant under T.

Proof. Let p: a --+ C°°(M) be the homomorphism of Lie algebras defining
the Hamiltonian action of A.

Let X E t and â(X) the corresponding vector field on M given by

Further let denote the symplectic 2-form on M. Then we have for the Lie
derivative £a(X)W = 0, so that the 1-form Ía(X)W is closed. Since M is simply
connected, it is exact and there exists a function f E C°°(M) with df = -i,5.(X)w.

Therefore we find a linear mapping CPT: t - C’ (M) extending p, i.e., CPT o
dj(1) = cp. Let X, Y e t and set C(X, Y) := {CPT(X), CPT(Y)}. Then C defines
a cocycle t x t - R, hence a central extension

More precisely t = t (B R with the bracket

Let T denote the simply connected Lie group with L(T) = t. Then we have
a homomorphism B: T  T so that we obtain an action of T on M which is
Hamiltonian with respect to the mapping (X, t) := pT ( X ) + t1, where 1 denotes
the constant function with value 1 on M. Therefore we have a moment mapping
T: M --+ t* which maps the T-orbits which are also T-orbits onto compact
coadjoint orbits in t*. A direct calculation shows that the only compact coadjoint
orbits in t* are the one-point orbits, i.e., those which correspond to elements
vanishing on [t,t]. We conclude that {’PT(X),’PT(Y)} == {(X,O),p(Y,O)} ==
([(XI 0) 1 (Y’ 0)1) 0.

This shows that pT is a homomorphism of Lie algebras and therefore the action
of T is Hamiltonian.
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Next we assume in addition that T is an antisymplectic involution on M which
has a fixed point mo and that all Hamiltonian functions associated to the action
of A are invariant under T. Let f = .p( X ’) = (PT (X) be such a function. Then
T*df = d( f o T) = df and therefore T*w = -w yields that 7,,à(X) = -â(X).
We conclude that T(t.m) = t-1T(m) for all t E j(A) and m E M. Now the
density of j (A) in T yields the same for all elements in T and from this we obtain
T*â(X) = -â(X) for all X E t. Hence T*d.pT(X) = d.pT(X) for all X E t.

It follows that the function .pT ( X) - .pT ( X) o T is constant. In the point mo it
vanishes, thus it vanishes on M and therefore the functions .pT(X) are invariant
under T. D

We note that the preceding proposition applies also with A = {1}, where it
shows that a symplectic torus action on a simply connected manifold is Hamilto-
nian. The fact that Theorem 4.1 allows us to treat not only compact manifolds M
has some interesting consequences for moment maps on coadjoint orbits. These
will be spelled out in Section 5.

Next we obtain a version of Duistermaat’s Convexity Theorem (cf. [Dui83]) for
non-compact manifolds.

THEOREM 4.4. (Duistermaat’s convexity theorem for non-compact manifolds)
Let (M, w) be a connected symplectic manifold, a : T x M - M a Hamiltonian
action of a torus T on M which is given by the Lie algebra homomorphism
A: t -&#x3E; C°°(M). Let further T be an antisymplectic involution on M such that all
Hamiltonian functions À( X), X E t are invariant under T and Q the manifold
of T-fixed points in M. Suppose that the moment mapping : M ---+ t* is proper.
Then, for every connected component Q’ of Q, we have 4l ( M ) = (b (Q’).

Proof. Let Q’ be a connected component of the closed submanifold Q of M.
Then Q’ is closed in M and therefore 4) (Q’) is a closed connected subset of t*. Let
q E Q’ and set = -b (q). Then it follows from the second part of Theorem 2.3 that
there exists a neighborhood Vq of q in Q’ and a neighborhood U x of x in t* such that
O ( Vq ) = Cq n Ux. On the other hand 4&#x3E; (Q’) lies in the convex set &#x26;(M), hence is
contained in Cq = x + Lx((M)) (Theorem 3.10). Thus Cq n U, = 4l (Q’) n Ux,
so that we see that 4l (Q’) satisfies the assumptions of Corollary 3.11. We conclude
that 4)(Q’) is convex. Now

by Proposition 1.8. 
Suppose that x C Ext( (Q’)). Then it follows from the second part of Theorem

2.3 that
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Therefore

From this we conclude that O ( Q ’) = P(M). E

COROLLARY 4.5. The assertion of Theorem 4.4 remains valid in the situation
of Corollary 4.2, i.e., if j : A ---+ T is a homomorphism of connected Lie groups,
MA the corresponding Hamiltonian action of A on M, and the moment mapping
(D,4: M - a* is proper. Then PA(M) = gb,4(Q).

Proof. This is an immediate consequence of Corollary 4.2 and Theorem 4.4.
D

Note that Proposition 4.3 shows how this corollary can be applied if M is simply
connected.

§ 5. Applications to coadjoint orbits

Let g be a finite dimensional real Lie algebra. We consider the Poisson structure
defined on g* by

(cf. [LM87, p.108]).
Let G be a connected Lie group with Lie algebra g. Then the coadjoint action

Ad* (g) - f : = f oAd(g )-1 is Hamiltonian with the identity as moment mapping (cf.
[LM87, p.213]), i.e., for X E g the function Hx(f) = f (X ) corresponds to the
Hamiltonian vector field X x ( f ) : = f o ad X on g*. Let f E g*. Then the coadjoint
orbit Of = Ad* ( G) . f is a symplectic leaf in the Poisson manifold g* (cf. [LM87,
p.212]).

In this section we are concemed with the propemess of the moment mapping
Of --+ t* for coadjoint orbits. Here we consider the set Of as endowed with its
manifold topology which might be different from the topology inherited from g* .
We start with a simple observation showing that this cannot be the case.

LEMMA 5.1. Let h 9 g be a subalgebra. If the moment mapping ph: Of  h*
is proper, then the orbit Of is a closed subset of g*.

Proof. We apply Lemma 1.14 with X = Of, Y = g* and Z = h* . D

LEMMA 5.2. If a C b are subalgebras of g such that the moment mapping
p,,: Of  a* is proper, then the moment mapping pb: O j - b* is proper.

Proof. We apply Lemma 1.14 with X = Of, Y = b* and Z = a*. 0

So far these formulas hold for arbitrary elements f E g*. Now we apply these to
the case where t C g is a compactly embedded abelian subalgebra, i.e., the group
ead 1 C Aut(g) is a torus.
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PROPOSITION 5.3. Let t C g be a compactly embedded abelian subalgebra
and Of a closed simply connected coadjoint orbit such that the moment mapping
pt: Of  t* is proper. Then pt(Of ) is a locally polyhedral subset of t* and if it
has extreme points, then Of contains points which are fixed by the group Ad* (T),
where T = exp t.

If the group Ad(T ) is closed, then the assumption that Of is simply connected
is not needed.

Proof. Let T’ denote the torus Ad*(T).
Let, E Aut(g). We claim that q* is a Poisson automorphism of g*. To see this

let f, g E C°°(g*) and note that

If Of is a coadjoint orbit invariant under -y*, then it follows that -i* induces a
symplectomorphism on Of.

Since the coadjoint orbit Of is closed, it is also invariant under the group T
and the above argument yields that this action preserves the symplectic structure.
Let j := Ad* ] T: T - T’. Then the action of T on Of is Hamiltonian and
in view of Proposition 4.3, the corresponding homomorphism cp: t - Coo ( Of)
extends to t’ := L(T’) in the sense that there exists a Lie algebra homomorphism
CPT;: t’ ---+ COO( Of) with pT, o dj (1) = cp. Now Corollary 4.2 applies and proves
the assertion.

If, in the situation above, the group Ad(T) is closed, i.e., a torus, then we can
apply Corollary 4.2 directly and therefore we do not need the assumption that Of
is simply connected in this case. D

To see how to compute the image of the moment mapping, we first have to
compute the local convexity data. The tangent space in f is given by

For the symplectic structure Q on Of we have

If (V, J) is a symplectic vector space, then the action of the symplectic group
Sp(V) on V is a Hamiltonian action with moment mapping
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Now let V := Tf ( Of). This is a symplectic vector space and the stabilizer
group G f = {g E G: g. f = f 1 acts on V by symplectic isomorphisms. We write
7r: G f --+ Sp(V) for the corresponding homomorphism of Lie groups. To find the
local convexity data for the local convexity theorem, we need the moment mapping
for the action of G f on V.

Before we compute it, we note that

holds for all and X e g. Hence

This leads to the following formula for the moment mapping:

Hence

The complexified Lie algebra gc decomposes according to the action of ad t into
a direct sum of the subspaces

where gg = Z Ber ( t) is the centralizer of t. We dénote the set of roots of gc with
respect to tc by

If Z - Z denotes complex conjugation on gc, then gc == gëa.
Let f E g* such that t C gf. Then g j is invariant under t and therefore

Let a e A and X a E gc. We consider X : = X a + X,, E g. Then f o ad :
Tj(Oj).ForY E t we find that
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It follows that

Note that the linear functional ia is real on t and that i [X,, Y, E go.
This leads to the following description of the local convexity data (cf. Lemma

5.16). Here we recall that cone(M) for a subset M of a vector space means the
smallest closed convex cone containing M.

REMARK 5.4. Let f E g* be such that t C gj and

Then f( i[Xa, Xc,]) vanishes for X a e (gy)c and the stabilizer 9j of f does not
contribute to the cone Cf. If g E NG(t), then pi commutes with Ad*(g) and
therefore CAd*(g).j = Ad*(g)Cf. D

In the following we say that a subalgebra tof a Lie algebra is a Cartan subalgebra
if it is nilpotent and self-normalizing. A compactly embedded Cartan algebra is
a Cartan algebra for which the closure of ead is a compact group. In this case t
is abelian, and the operators ad X, X E t are semisimple with purely imaginary
spectrum.

REMARK 5.5. Let f E t* and define Ba(X) := f( i[X, X]) for X E 9c. Then,
for cx e A we have four possibilities:
(1) Ba vanishes. Then 9c C (9j)C and a does not contribute to C j because

iaf([Xa,Xa]) = 0 for all Xa e 9c.
(2) Ba is non-zero and positive semidefinite. Then -ia E Cy.
(3) Ba is non-zero and negative semidefinite. Then ia E C f.
(4) Ba is indefinite. Then :Ha E Cf.
For an example where case (4) occurs, we refer to [Ne93c, Ex. IV.2]. Example

IV.14 in [Ne93c] shows also that it may happen that 9j = t, t is a Cartan algebra,
only cases (2) and (3) occur, and that C f is a plane which is the sum of three rays.
D

PROPOSITION 5.6. Let f E 9* be such that t C 9j and that Oj is simply
connected if the group ead t is not closed. Suppose further that the restriction map
pti Of - t* is proper and that the convex hull of its image contains no lines.

For T = exp X we denote the T -fixed points in 0 j by O f,fix . Then

Proof. First we note that according to Corollary 4.2 and Proposition 4.3,
the set C := pt(Of) is closed and convex, hence has extremal points because
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it contains no lines (Lemma 1.4). Further each extremal point of C is the image
of a T-fixed point in Of under pt. Now the claim follows from Remark 5.4 and
Proposition 1.8. D

If, in addition, the subalgebra t is a Cartan algebra, then the following observa-
tion simplifies the computation of the set C considerably.

PROPOSITION 5.7. Let t C g be a compactly embedded Cartan algebra and
f e t*. Then Of,fix = W. f, where W = NG(t)/ZG(t).

Proof. Suppose that f’ = Ad*(g). f E O j,fix . Then t C gf’ = Ad(g).g f and
hence there exists an inner automorphism Ad(h) of 9 f such that Ad(hg-1).t = t
(cf. [HiNe9l, Satz III.7.10]). Thus hg-1 1 E NG(t) and

proves the claim. D

ADMISSIBLE COADJOINT ORBITS

In this section g denotes a finite dimensional real Lie algebra which contains a
compactly embedded Cartan algebra t.

DEFINITION 5.8. (a) We say that an element f e g* is admissible if the coadjoint
orbit Of is closed and its convex hull contains no lines. We call f E g* strictly
admissible if there exists a closed invariant convex set C C g* which contains no
lines and which contains the coadjoint orbit Of in its algebraic interior. We say that
Of is (strictly) admissible if f is (strictly) admissible. We will see later that strict
admissibility implies admissibility. That this property implies that the convex hull
of O j contains no lines is clear.
An element f E g* is said to be of convexity type if the coadjoint orbit Of lies in a
closed pointed convex cone and of strict convexity type if Of lies in the algebraic
interior of a pointed convex cone in g* which is invariant under the coadjoint action.
0

The following lemma provides the link between the notions of admissibility
and convexity type.

LEMMA 5.9.

(i) conv Of contains no lines if and only if ( f, 1) E g* X R is of convexity type.
(ii) f is strictly admissible if and only if ( f , 1) E g* x R is of strict convexity type.

Proof. (i) If ( f, 1 ) is of convexity type, then conv 0(f = (conv O j ) x { 1 }
contains no lines and therefore the same holds for conv Of. 

__

If, conversely, conv Of contains no lines, then we set C :== conv Of. Then C
is a closed convex set in g* and conv Of is a dense convex subset. Hence conv Of
contains the algebraic interior of C. Since this set contains no lines, it follows
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immediately that C contains no lines. Now Proposition 1.11 shows that C x {1}
lies in a pointed closed convex cone and therefore ( f , 1 ) is of convexity type.
(ii) Suppose first that f is strictly admissible and that tJ 1 9 algint C, where C is
invariant and contains no lines. Then, according to Proposition 1.11, C x { 1 } is
containd in a pointed closed convex cone W C g* x R. Taking the smallest cone
with this property, the invariance of C implies the invariance of W.

If E is the affine subspace generated by C, then we may w.l.o.g. assume that
W C E x R. Then R* ( algint C x { 1 } ) = R*(intE C x {1}) is an open subset of
E x R and therefore ( algint C ) x {1} is contained in algint W. Hence Of x t 1
is contained in algint W which means that ( f, 1) is of strict convexity type.

If, conversely, O(f , 1) E algint W, where W is a closed pointed invariant convex
cone in g* x R, we set C := {a E g*: (a, 1) e W}. Then C is a closed convex set
containing no lines and (algint C) x {1} D (algint w) n (g* x {1}). It follows in
particular that Of Ç algint C, hence that f is admissible. D

For the following we recall that if t is a compactly embedded Cartan algebra,
then g = t e [t, g] so that we can identify t* with the subspace [t, g]1- in g*. Note
that this is exactly the set of T-fixed points in g*.

LEMMA 5.10. Let f E g* be admissible and t C g a compactly embedded Cartan
subalgebra. Then the restriction mapping p,: Of - t* is proper, Of n t* # Ù, and
the closed convex hull of pt(Of ) contains no lines.

Proof. Let C := conv 01’ Then the closedness of Of implies that the
inclusion mapping Of --+ C is proper. Hence, to prove the propemess of pt, it

suffices to show that pt: C t* is proper.
To see this, we first note that C is a closed convex set which contains no lines and

which is invariant under the coadjoint action. Let W := lim(C)*. Then, according
to Proposition 1.11, this a generating invariant cone in the Lie algebra g. Hence
int W n t # 0 by [Ne93a, Lemma 111.5]. Pick a regular element X E t n int W.
Then the function H x: a I--t a(X ) is proper on C (Proposition 1.12). Therefore
the mapping

is proper and the propemess of pt on C follows from Lemma 1.14. Moreover, we
also get from Lemma 1.14 that HX is proper on the closed convex set pt(C). Hence
int B(pt( C)) =1 0 which in tum implies that pt(C) contains no lines (Proposition
1.11).

Since HX is proper and bounded from below on Of (Proposition 1.12), there
exists an element f’ E Of such that HX takes a minimal value in f’. Let Y E g.
Then it follows that

Hence
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For the following theorem we recall that a convex set contains no affine lines if
and only if its closure has this property (cf. [Le80, Satz 1.8 and Lemma 1.1]).

THEOREM 5.11. For f E g* the following are equivalent:
(1) f is admissible.
(2) Of n t* # 0 and conv Of contains no lines.
(3) pt: 0 f - t* is proper and the convex hull of pt (Of) contains no lines.
(4) Of is closed and the convex hull of pt(Of ) contains no lines.

If these conditions are satisfied, then Of is simply connected.
Proof. (1) =&#x3E; (2): This follows from Lemma 5.10.

(2) =&#x3E; (1): According to Theorem 1. 18 in [Ne93b] the condition that Of intersects
t* implies that this set is closed and simply connected. Hence f is admissible if Of
intersects t* and the convex hull contains no lines.

(1) =&#x3E; (3): Lemma 5.10.
(3) =&#x3E; (4): It follows from Lemma 5.1 that Of is closed if pt: Of  t* is proper.
(4) =&#x3E; (1): Let C = conv Of. According to our assumption, the convex set

contains no lines. Hence H(C) := H(C) C kerpt. Since C is invariant under
the coadjoint action, the subspace a := H(C)-L of g is an ideal. Since H(C) Ç
kerpt = tl, it follows that t C a. Then a = g is a consequence of g = t + [t, g].
Finally H(C) = al = {0} follows, i.e., C contains no lines. D

COROLLARY 5.12. If f is strictly admissible, then it is admissible.
Proof. In view of Theorem 5.11, we only have to show that for a strictly

admissible element f the coadjoint orbit Of intersects t*. Using Lemma 5.9, we
see that we even may assume that f is of strict convexity type. Now the assertion
follows from Theorem II.4 in [Ne93b]. 0

REMARK 5.13. Let g = R2 XJ R denote the Lie algebra of the group of motions
of the euclidean plane. Then t = {0} x R is a compactly embedded Cartan algebra
and the coadjoint orbits in g* are cylinders centered about the t*-axis. Hence the
moment mappings pt: O j 2013 t* are proper but the convex hulls of these orbits are

cylinders, hence contain the line t*. D

To prepare the proof of the Convexity Theorem for coadjoint orbits we recall
some notions conceming compactly embedded Cartan algebras and root decom-
positions.

DEFINITION 5.14. Let t C g be a compactly embedded Cartan algebra and
A C it* the corresponding set of roots.

Let t 2 t denote a maximal compactly embedded subalgebra. Then a root is
said to be compact if gè Ç tc. We write Ak for the set of compact roots and Ap for
the set of non-compact roots.
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The Lie algebra g is said to have cone potential if [X a, Xy] # 0 holds for all
non-zero elements Xa E gg .

The finite group )/V : := Nh ( t) / Z K( t) is called the Weyl group of t. It coincides
with the Weyl group for the system of compact roots (cf. [Ne93a, Prop. 111. 1 ]).
A subset A+ C A is called a positive system if there exists Xo E it such that

A positive system is said to be t-adapted if the set At of positive non-compact
roots is invariant under the Weyl group W.

Let A+ ç A be a t-adapted positive system of roots. We define the maximal
cone and the minimal cone

We note that these cones are invariant under the Weyl group because A+ is invariant.
We recall that a Lie algebra g is called quasihermitean if the centralizer of

3 = 3(t) equals t. Note that this is equivalent to the existence of a t-adapted
positive system of roots (cf. [Ne93d, Prop. II.7]). D

To illuminate the assumptions we will make in the following, we recall that the
stabilizer 9 1 of f e g* is said to be reduced if the largest ideal contained in g j is
central in g and strictly reduced if ker f contains no non-zero ideal.

If g --+ C’ (Of ) is the Lie algebra homomorphism corresponding to the Hamil-
tonian coadjoint action, then g f is strictly reduced if this homomorphism is injec-
tive. The largest ideal in g1 contains those elements of g which correspond to
constant Hamiltonian functions on Of. Note that this assumption is only for tech-
nical corivenience since one can always mod out the largest ideal a in ker f without
affecting the coadjoint orbit which lies in al = (g/a)* C g*. Then g1 is strictly
reduced in g/a and therefore isomorphic to a Lie algebra of Hamitonian functions
on Oj. It follows in particular that the largest ideal in g f is central because it

consists of constant functions on Of.

LEMMA 5.15. If there exists an admissible element f E g* such that g1 is

strictly reduced, then the Lie algebra g is admissible, i.e., 9 EB R contains pointed
generating invariant cones. It follows in particular that 9 is quasihermitean.

Proof. Let C := conv Of. Since g f is strictly reduced, the subspace C’ C g
is trivial, i.e., C generates g* as a vector space. Furthermore, since f is admissible,
C contains no lines. Hence W :_ (C x {1})* C g* x R is a generating invariant
cone (Proposition 1.11). An element (X, t) is contained in H(W) if and only if
HX (C ) + t = {0}, i.e., if the Hamiltonian function HX is constant on C. In view of
the remark above, this is only possible if X = 0 or if t =1 0. So there are two cases.
If H(W) = {0}, then W is pointed and generating, and g is clearly admissible. If
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H(W) 0 {0}, then H(W) is a one-dimensional ideal which intersects g trivially.
Hence W n g is a pointed generating invariant cone in g and therefore g is admissible
because (W n g) x R+ is a pointed generating invariant cone in g x R.

That an admissible Lie algebra is quasihermitean and has cone potential follows
from [HHL89,111.2.14, 111.6.18] (cf. also [Ne93a, Prop. III.15]). 1:1

LEMMA 5.16. Let À be a non-compact root, Z E oc X = 1/2(Z + Z), and
f E t*. Then

Proof. We have to calculate ( f, ead X E) for E E t. Using the formulas from
[HiNe93a, 7.8], we find that

Note that this formula yields ( f, e E ) = f(E)+!f([Z, Z])À(E) for À([Z, ZJ) ==
0. In both cases we use the fact that [zZ, zZ] == Iz/2[Z, Z] to complete the proof of
the assertion. D

THEOREM 5.17. (The Convexity Theorem for coadjoint orbits) Let t C g be
a compactly embedded Cartan algebra, and f E t* an admissible element such
that g f is strictly reduced. Then there exists a t-adapted positive system A + with
f E C*min. For every admissible element f E C*min we have

where

Proof. According to Theorem 5.11, the coadjoint orbit Of is simply connect-
ed, the moment mapping p,: Of ---+ t* is proper, and the convex hull of the image
contains no lines. Using Proposition 5.7, we see that the set of T-fixed points in
O j is given by w. f and by Proposition 5.6 we therefore have
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where Cf = cone{-za/(z[XX]) : Xa E gg} (cf. Remark 5.4).
Let C : := conv 0/. This is a closed convex invariant subset of g* which contains

no lines. Hence W := lim(C)* is a generating invariant cone in g*. Let 3 denote
the center of t. Then g = 3 e [3, g] since g is quasihermitean (Lemma 5.15) and
therefore int W n 3 =1= 0 follows from [Ne93a, Th. I.10].

Pick X E int W n 3 such that ker ad X = t (the set of all such elements is
dense in 3). Then ce (X) 0 0 holds for all non-compact roots a (Lemma 5.15,
[Ne93a, Prop. 11.20]). We conclude that there exists a positive system A+ such that
At = f a E Ap: ia(X) &#x3E; 0} (cf. [Ne93d, Lemma II.2]). Moreover, by Lemma
II.4 in [Ne93d] we may even choose A+ in such a way that

holds for all a E At. Now the fact that X is fixed by YV yields that A+ is t-adapted.
According to the choice of X, the function H x on pt(Of) and therefore also

on C takes its minimal value in f because H x is proper on C by Proposition 1.12,
it is constant on the Weyl group orbits in t*, and W.f is the set of extreme points
of Pt(Of) (Theorem 4.1, Proposition 5.7). It follows that even X E Gj. Hence
a(x)f (i[X X,,,]) &#x3E; 0 for all a E At,Xa E g’. c Since in(X) &#x3E; 0, it follows
that f( i[Xa, X a])  0, i.e., f E C*.i..

Now let f C C*min be an admissible element, where 9j need not necessarily be
reduced. In view of what has already been shown above, it remains to calculate the
cone which occurs in (5.2). We claim that n,EW cf= cone( iA j). According
to the special choice of A+,

Moreover the set A j is by definition invariant under the Weyl group. Hence

follows from Proposition II.12 in [Ne92].
On the other hand let a E A+ and i E W with (-, - f, [X a, Xa])  0. Then

Lemma 5.16 yields that ia E limpt( O,.f) = lim Pt( Of ). Therefore

REMARK 5.18. Suppose that g has cone potential. If, in addition to the assump-
tions of Theorem 5.17, f E irlt Cmin, then f(i[Xa,Xa])  0 holds whenever

X, : 0. Hence A+ = At and therefore
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a

The preceding theorem generalizes the Convexity Theorem of Paneitz for Her-
mitean simple Lie algebras (cf. [Pa84]) and Kostant’s Convexity Theorem for com-
pact Lie algebras to arbitrary Lie algebras. Moreover it even generalizes Paneitz’s
Theorem for Hermitean Lie algebras because our theorem applies also to elements
lying on the boundary of the cone Cmin and not necessarily on the interior. If g is
a compact Lie algebra, then Ap = 0 and therefore Pt(Of) = conv W. f for every
f E t* .

So far we have an explicit description of the image of the moment mapping
pt : Of - t* if f is admissible. Next we will characterize the admissible elements.
The preceding theorem tells us that we have to search among those which are lying
in a cone C*min for a t-adapted positive system. We will see below that this condition
describes precisely the set of admissible elements.

LEMMA 5.19. Let g be a Hermitean simple Lie algebra, t C g a compactly
embedded Cartan algebra, A+ a f-adapted positive system of roots and f E
C*min t*. Then f is admissible.

Proof. Let Z e 3(t) be a non-zero element such that i a ( Z )  0 holds for

all non-compact positive roots (this fixes the choice of sign), g = t + po a Cartan
decomposition of g, 0 the corresponding involution, and ro (X, Y) : = - r,(X, 8Y)
the associated scalar product, where k, is the Cartan Killing form of g.

For g = exp Y k, k E K, and Y E po, we find that Ad(g ) . Z = ead y Z and

holds for all Y e po because adY is symmetric with respect to ""0, hence eadY is
positive definite.

Let C := convAd(G).Z. Then the preceding paragraph shows that C # g.

Hence H(C) is an ideal of g which is different from g, whence H(C) = {0}
because g is simple. We conclude that C contains no lines.

Next we use r, to identify g with g* by assigning to X e g the functional
X(Y) := k(X, Y). Then it follows that Z is admissible and the Convexity Theorem
5.17 yields that

wnenever G E C*min. 
On the other hand we have ia( i[X a, Xa]) &#x3E; 0 for X a E g B {0} and

(cf. [HiNe93a, Th. 7.4]) and therefore

together with the negative definiteness of k on t yields that i [X a, Xa"is a positive
multiple of -ia e t* C g*. Thus Z E C*min and the projection of Ad(G)Z onto t
is contained in the set Z - Cmin.
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Now we turn to the functional f E C*min. Since f (Z - Cmin) 9] - oo, f((Z)],
the functional - f is contained in B(C). This set is invariant under the coadjoint
action. Hence -(9/CB(C)= lim(C)* and since the cone lim(C) is generating,
the cone lim(C)* is pointed. We conclude that the convex hull of Of contains no
lines. Consequently f is admissible by Theorem 5.11(2). D

THEOREM 5.20. Let t C g be a compactly embedded Cartan algebra and f E t*
such that g f is strictly reduced. Then f is admissible if and only if g is admissible
and there exists a t-adapted positive system such that f E C*min.

Proof. In view of Theorem 5.17, we only have to show that f is admissible
if f E C*min holds for a t-adapted positive system.

To see this, we first pick a t-invariant Levi decomposition g = tXJ s, where r
denotes the radical of g ([HiNe93a, Prop. 7.3]) and t = (t n r) e (t n s). We set
tt : := t n r and t5 : := t n 5 and write S and R for the subgroups of G corresponding
to r and s. Then we use Lemma I.17 in [Ne93b] to see that

where

In view of Theorem 5.11, it only remains to show that the closed convex hull of
Pt(Of) = pt(Of,) + Pt( (18) contains no lines. This follows from the claim that

We first deal with the semisimple part. Since g permits a t-adapted positive
system, it is a quasihermitean Lie algebra. Therefore it contains only Hermitean
and compact simple ideals. Accordingly we write fs as f, + ... + fk, where
5 = 51 0153 ... 0153 Sk is the decomposition into simple ideals. If sj is compact, then 0 fJ
is compact and pt(Of) = conv W . f by Theorem 5.17. If 5, is Hermitean, then
Lemma 5.19 shows that fj is admissible, and since there exist only 2 possibilities
for a W-invariant set A+ in xj, it follows from Theorem 5.17 that Pt(Of) C
conv(W.fj) + cone(iA+). Finally we use that

and W. fs = W. f, OE) ... (B W. fk to see that

Next we consider On = Ad*(R).f,. We write r = n + tr, where n is the
nilradical of g. Then [n, n] 9 3(g) by [HiNe93a, Th. 7.15] because g is admissible.
Since ead* t1: . fr = fT, we conclude that
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where ad* n n-- n/3(g) is abelian. Hence Lemma 5.16 applies and, using that
f E C*min, we obtain that p,(Of,) C f r + cone(iA) ).

Putting these results together, we find that

OLAFSSON’S CONVEXITY THEOREM

In this subsection we will show how Olafsson’s Convexity Theorem ([Ola90, Th.
5.5.1]) which is a version of Paneitz’s Convexity Theorem for symmetric spaces
can be obtained by combining the non-compact version of Duistermaat’s Convexi-
ty Theorem (Section 4) with the Convexity Theorem for coadjoint orbits (Theorem
5.17). In the compact case we obtain a proof of Kostant’s Linear Convexity The-
orem as a consequence of Duistermaat’s Theorem and the Convexity Theorem for
coadjoint orbits in compact Lie algebras (cf. [Dui83]).

LEMMA 5.21. Let g be a finite dimensional Lie algebra and a an involutive
automorphism of g. Further let f E g*. Then the mapping T :== -0-*: g* -- g*
induces an antisymplectic mapping O j - 0,.f .

Proof. Since conjugation by 0- preserves the group of inner automorphisms
of g, the mapping T preserves the set of coadjoint orbits, hence maps Of onto OT.1’
That this mapping is antisymplectic follows from

Let be an involutive automorphism of the Lie algebra g. Then g = h + q,
where

Accordingly we have a direct decomposition of g* as g* - h* (b q* = q -L E)  -L.
Suppose that t C g is a compactly embedded Cartan algebra which is invariant

under . Then t == th e tq, where th : = t n j and tq : := t n q and t* - i* (D t§ . We
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consider an element f c t*. Then 7 (f ) = f and therefore T is an antisymplectic
involution of the coadjoint orbit Of (Lemma 5.21).

LEMMA 5.22. If f E tq is admissible, then the projection Ptq : Of  tq is

proper.

Proof. First we note that the coadjoint orbit Of is invariant under T. Let
C := conv Of. Then C is also invariant under T. As in the proof of Lemma 5.10,
since Of is closed, it suffices to show that Ptq: C ---+ t* is a proper mapping.
Let W := lim(C)*. Then int W n t =1 0 (cf. Lemma 5.10) is invariant under
7 * = - o,, hence there exists X E int W n tq. Now, according to Proposition 1.17,
the function Hx : a - a( X) is proper on C. Moreover, HX o T = HX, i.e.,
ker(T + idg* ) C ker HX, so that Lemma 1.15 implies that Ptq = 1 (,r + idg* ) o pt
is a proper mapping on C. D

For the following we fix a simply connected Lie group G with L(G) = g and
lift the automorphism (1 of g to an involutive automorphism (1G of the group G.
Then H := (exp j ) is the connected component of the group of fixed points of (1 G
in G.

LEMMA 5.23. Let f e q*, Of = Ad* (G). f be the coadjoint orbit of f and
Q = Of n q* the fixed point set of the antisymplectic involution 7 of Of. Then Q is
a manifold invariant under H and every H-orbit is a connected component of Q.

Proof. Since we know already that Q is a Lagrangian submanifold of 0 f
(cf. Section 2), it suffices to show that every H-orbit in Q is open. Since f was
arbitrary, it even suffices to show that Ad*(H). f is open in Q.

To see this, we first note that

Using the fact that [q, q] C h, it follows that X E q implies that f ([X, q]) C
f(h) = {0}. Hence X E q and f ([X, h]) = tOI yields f o adX = 0. Therefore
Tf(Q) = f o ad h and consequently the H-orbit of f is open in Q. 0

THEOREM 5.24. Let 9 be a Lie algebra, a an involutive isomorphism of g, and
9 = h + q the corresponding decomposition. Further let t C g be a compactly
embedded Cartan algebra, A+ a t-adapted positive system such that the cone C* in
is pointed, and f E tq n C*min. Then

where
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Proof. First we note that f is admissible by Theorem 5.20. We consider
the symplectic manifold M = 0 ¡. Then T = - o,* induces an antisymplectic
isomorphism of M (Lemma 5 .21 ) and the moment mapping for the action of the
group Tq : = ead tq , namely the projection Ptq: M -- t* q is a proper mapping (Lemma
5.22).

Moreover M is simply connected by Theorem 5.11 and therefore Corollary 4.2
applies in view of Proposition 4.3. To apply Corollary 4.5, we note that, according
to Lemma 5.23, the H-orbit of f is a connected component of Q. Now Corollary
4.5 shows that Ptq(Ad*(H).f) = Ptq (Of). The second equality follows from
Theorem 5.17. o

COROLLARY 5.25. We keep the assumptions from Theorem 5.24 and assume
in addition that t C 9 is a compactly embedded Cartan algebra such that dim tq is
maximal. Then

where

and W is the subgroup of G1(tq) generated by the reflections in the hyperplanes
which are non-zero restrictions of compact roots to tq. 

Proof. In view of Theorem 5.24, it only remains to show that Ptq (W .f) =
W.f. According to [Ne92, Th. II.15], it suffices to check that for every compact
root a with a 1 t, # 0, there exists 1 E YV such that q(tq) 9 tq and, 1 tq is the

associated reflection in ker( a /tq).
To do so, we first note that the invariance of t under a and the fact that t is the

unique maximal compactly embedded subalgebra containing t ([HHL89, A.2.40])
imply that u(t) = e. Moreover the automorphism cr leaves the center and the
commutator algebra of t invariant. Write _ + tq and = + 3q for 3 = 3(t).
Then we also have t’ = [t, t] = t’ + t’ and according to our assumption on tq,
this subalgebra is a maximal abelian subspace of t, Since every Cartan algebra
contains the center, it even follows that t : = tq n t, q is maximal abelian in t’ q
Now (t’, t’h) is a semisimple symmetric pair of compact type and YV is the Weyl

group corresponding to the system of restricted roots on t’. Using [Hel78, p.289]
we see that every element of W is induced by an element in ead’, hence by an
element in W which leaves tq invariant. This proves the assertion. D

REMARK 5.26. So far we have simplified the formula for the set of extreme
points of the image of an H-orbit. If f E int C*min’ then A j = At and therefore
the limit cone of the image is given by cone(A) ] i ), the cone generated by the
restrictions of the non-compact roots to tq. Thus we have
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If, in addition, g = t is a compact Lie algebra, then A+ = 0 and therefore

is the Linear Convexity Theorem of Kostant in the version for symmetric spaces
of compact type. D

In the theory of symmetric spaces it is often convenient to pass from the

symmetric Lie algebra ( g , # , a) to the c-dual Lie algebra (gc, , uc), where gc = +
iq ç gc and oc(X + iY) = X - iY. To explain how Olafsson’s Convexity Theorem
follows from our results, we assume from now on that g is a semisimple Lie algebra
endowed with an involutive automorphism a. We choose a Cartan involution 0
commuting with T ([Lo69, p.153]) so that we obtain a Cartan decomposition
g = t + p and a direct decomposition

We choose a maximal abelian subspace a C q,. Then gC == t + #, + iqi + iqp and
 = + iq, is a maximal compactly embedded subalgebra of Oc. Therefore ia is
contained in a Cartan algebra t of tc which is invariant under uc and which satisfies
t = te ED i a, where te = t n t.

Let X E qp. For many applications in representation theory it is important to
have some information on the projection of the H-orbit Ad(H).X C q onto a

along the orthogonal complement of a with respect to the Cartan Killing form. We
explain how this can be tumed into a problem on a coadjoint orbit endowed with
an antisyplectic involution.

We consider g and g’ as subalgebras of the complexification gc. Let B denote
the Cartan Killing form of gc and r, = Im B its imaginary part. Then r, is a real
symmetric invariant bilinear form on gc. The restriction to the real form g’ is

therefore 0, so that we can identify (gC)* with the subspace i h + q of gc. More
explicitly, we have an isomorphism : + q --+ (gC)* satisfying îp(Y)(Z)
Ii(Y, Z ) which is equivariant with respect to Ad(Gc). Let X C q. Then

and the above problem reduces to the determination of the image of the set
Ad* (H) .1/J( X) under the restriction mapping to (ia)* = e (a).

To meet the assumptions we have made above, one needs thatg’ is a quasiher-
mitean Lie algebra, i.e., a sum of compact and Hermitean simple ideals. This is
clearly satisfied if either = 9 is a Cartan involution (in this case.01 is compact)
and in the setting of Olafsson’s theorem. In this case every maximal compactly
embedded subalgebra u of g’ has full rank so that the Cartan subalgebras of u are
compactly embedded Cartan algebras in g’.

Let g = t + p a Cartan decomposition compatible with the decomposition
g=-pq,oGqpa maximal abelian subspace, t Ç t + ip a Cartan subalgebra
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containing ia, and A+ a t-adapted positive system of roots of gc with respect to
tc. We set E := {a la: a E A} B {0} and define Ep and Ek accordingly. Let Wa
denote the Weyl group of the restricted root system Ek and E+ the set of non-zero
restrictions of positive non-compact roots. We define

and

Let a; E p and a’ E A+ with a’ 1 el = a. Pick a non-zero element
and Y E a. Then 

and B(X,,,, + Xa" Xa’ + Xcx’) &#x3E; 0 because Xa’ + Xai E p and B is positive
definite on p.
We conclude that e(Y) E C*min if and only if a(Y)  0 for all a Ei E+

Therefore (cmax) = C*min n ( a ) . Moreover, for a Ei E p + and Y E a we have

so that the above calculation yields R+ 0 - 1 (i a) = R+[Xa" Xa’]’ Consequently

This can also be expressed as follows. Choose Aa’ E a such that B(A,,, Y) =
a’(Y) for all Y E a. Then Aa’ E IR+ [X,,,,, Xa’] and

THEOREM 5.27. Let g be a semisimple Lie algebra, a an involutive isomorphism
of g, g = h + q the corresponding decomposition and g = t + p a compatible Cartan
decomposition. Further let a C qp be a maximal abelian subspace, t C t + ip a
Cartan subalgebra containing ia, and A + a t-adapted positive system of roots of
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gc with respect to te such that X E int Cmax holds for the associated system E + of
positive restricted roots. Then

where Wa is the subgroup of Gl( a) generated by the reflections in the hyperplanes
which are non-zero restrictions of compact roots to a.

Proof. In view of above considerations, this is just a restatement of Corollary
5.25 in the above context. D

REMARK 5.28. (a) As Corollary 5.25 shows, the above result can be generalized
to the case where X C âCmax, but in this case the image is harder to describe.
(b) If (g, h) is an irreducible symmetric Lie algebra of regular type, i.e., 0’ is a
Hermitean simple Lie algebra or the complexification of a simple hermitean Lie
algebra, then Theorem 5.27 is Olafsson’s Convexity Theorem.
(c) If g is a semisimple Lie algebra and 0 = o, a Cartan involution, then Ap == 0
and therefore Theorem 5.27 simply states that

which is Kostant’s Linear Convexity Theorem. D

§ 6. Hamiltonian actions of compact Lie groups

The main result of this section is a strengthened version of Kirwan’s convexity
theorem (cf. [Ki84]).

REMARK 6.1. Let G be a compact Lie group with Lie algebra g. Choose a
Cartan subalgebra t of g and consider the root system A( gc, tc) C it*. We choose
a set of positive roots A+ (gc, tc) and denote the corresponding set of simple roots
by A. We can view t* as a subset of g* extending linear forms on t* by zero on the
orthogonal complement with respect to the Killing form. Moreover we denote the
Euclidean scalar product defined on it* by duality and the Killing form which we
denote by (’!’). D

Let f e t*. Then the Lie algebra of G f is given by

In fact, if 0 # Xe E go are chosen in such a way that

for all v E it*, this follows from the following calculation
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PROPOSITION 6.2. Let f E g*. Then the stabilizer G f of f in G is connected.
Proof. If we identify g* with g via a G-invariant form. Then we have

and this centralizer is connected according to [Hel78, Cor. VII.2.8] since exp R f
is a toral subgroup of G. D

An element f E t* is regular if g f = t, which is the same as saying (if ] Q) fl 0
for aIl 13 E A(gc, tc) or G f = T, where T is the maximal torus in G corresponding
to t. We choose a Weyl chamber tô in t* via

We denote its closure by t*
Below we will have to deal with faces of t:t, so we note right away that these

correspond to the subsets of A via

and

The algebraic interior of F is then given by

LEMMA 6.3. Let F be a face of t*+ and f, f’ E algint F. Then the stabilizers
G f and G f’ are equal.

Proof. According to (6.1 ) and Proposition 6.2 it suffices to show that for
13 E A(gc, tc) we have (i f 1 ) = 0 if and only if (if’ ,) = 0. But that is true
since for f e algint F the equation (i f  ) = 0 is satisfied precisely for the roots
which lie in the span of AF- D

For any face F of t*+ we set GF := G f, where f is any element of algint F.
Moreover we set

REMARK 6.4. The are submanifolds of g* . This is a consequence of the slice
theorem (cf. [GS84, p.201]) because for every slice S through f E g* the set of all
elements with orbits of the same dimension is given by those elements in S which
are fixed by G f , and for a linear action the set of fixed points is a subspace. The
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intersections of the E1 with t2 are algebraic interiors of certain faces which have
the right amount of singularity. More precisely, we have

Let now F be a face with dim G - dim GF = j and f E algint F. Then we have

We collect a few facts from [GS84]: Note first (cf. [GS84, p.184]) that

Then [GS84, Prop. 27.3] implies that the set

is open dense and connected in M. Note that 4l : Mreg - g* has constant rank r.
For s = maxM{dimG.$(.r)} we set

and Mreg,s = lVlreg n Ms. Note that M, is also open in M.

LEMMA 6.5. The subset Mreg,s of M is open, dense and connected. Moreover
(Ms) ç S .

Proof. Consider x e Mreg. Then because of the constant rank of O on Mreg
we find a neighborhood U of x such that 4&#x3E;: U ---+ -b(U) is a submersion onto the
locally closed submanifold (D (U) of g*. Moreover we may assume that the fibers of
this submersion are all connected. Since 4l is G-equivariant, we may assume that
4) (U) is the union of connected open pieces of the symplectic foliation of g* given
by the coadjoint orbits. Then a dense open connected subset Qx of (U) consists
of points whose coadjoint orbits have dimension

Since the fibers of the submersion are connected, (b - 1 (Q,) n U is an open dense
connected subset of U.

If we now consider two points x, x’ E Mreg and the corresponding neigh-
borhoods U and U’, then Sx = s,, if the two neighborhoods intersect. Thus the
connectedness of Mreg shows that sx = s for all x e Mreg. This in tum shows
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and hence proves that Mreg,s is open dense and connected. The last claim is obvious.
D 

LEMMA 6.6. Let M be a symplectic manifold and G x M - M a Hamiltonian
action with moment map : M ---+ g*. Suppose that F is a face of t+ such that
algint F c £ and the set MF:= Ms n -l(algintF) is non-empty.

(i) MF is a GF-invariant symplectic submanifold of M.
(ii) The action T x MF - MF is Hamiltonian with moment map IMF.
(iii) For each open subset UF of MF the set G.UF tg x E M: g E G, x E UF)

is open in M.

Proof. (i) For x E lVls and f = lll ( z ) E algint F we have

and d4&#x3E;,, (Tx(G.x)) = Tf(G.f) so that the mapping (D: M, ---+ S, is transversal
to algint F which is a submanifold of E,. This implies that MF is a manifold (cf.
[LM87, p.345]). In order to show that MF with the restriction of the symplectic

of M is actually a symplectic manifold, we note first that for each e MF
we have

and

From (6.3) and (6.5) we deduce

and hence, using (6.4), we find

From (6.4) together with [GS84, p.184] we find

where -L denotes the orthogonal complement with respect to the symplectic form
w. Moreover,

implies
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If now w e Tx(MF) fl T,, (MF)1we can write w = a(X)x with X E g f and have

as well as wx ( w, v ) = 0 for v E Tx(MF). Thus (6.7) shows that w is perpendicular
to all of Tx( M), i.e., w = 0. But this shows that MF is symplectic. The G F-
invariance is clear since is G-equivariant and algint F consists of GF-fixed
points.
(ii) This is obvious, since the relevant homomorphism t ---+ COCJ(MF) simply is
the composition of the homomorphism g - COCJ (M) corresponding to &#x26; and the
restriction to MF.
(iii) The equality (6.7) shows that G. UF contains an open neighborhood of UF.
Since G acts by homeomorphisms, this implies that G. UF, which is the union of
translates of this open neighborhood, is itself open. D

Recall from Remark 6.4 that

where the F(3) are certain faces of t+.

LEMMA 6.7. (D (m,) n i* is contained in one of the algint F(’).
Proof. We know from Lemma 6.5 that

Moreover we have seen that for each i E {l,..., m } the manifold MF(,) satisfies

Each element of Ms is G-conjugate to an element of precisely one of the M F(t)
since elements of different faces of t+ are not G-conjugate ([Bou82, Ch. 9, § 5, no.
2, Prop. 2]). This means that we have a disjoint finite union

and hence also

But Mreg,s is connected and each of the (G.Mp)) n Mreg is open. Moreover,
whenever G.MF(t) is non-empty, it intersects the open set Mreg (Lemma 6.6(iii)),
so only one of the sets G.MF(i) can be non-empty and that proves the claim. D

We denote the face of t* containing q&#x3E;(Ms) n t+ by F and its span in t* by
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LEMMA 6.8.

Proof. (i) We have (x) E algintF and g.( x) == q&#x3E;(g.x) E algintF which
shows g. D (x) = (x) and hence 9 E GF.
(ii) This follows immediately from Lemma 6.7 since each element of M, is G-
conjugate to some element in W -1 (t+).
(iii) Now suppose that MF is the disjoint union of two sets M(l) and M(2) each of
which is a union of connected components in MF. It suffices to show that one of
these sets has to be empty. We claim that G.M) and G.M(2) are disjoint. In fact,
if they are not disjoint, we find 91, 92 e G and x, E M(z ) such that

But then (i) implies that g2 lgl E GF and since GF is connected, we see that x 1
and X2 belong to the same connected component of MF which is a contradiction.
Lemma 6.6(iii) shows that the G.M(i) are open. Now (ii) implies that (G.MF) nF

Mreg = Mreg,s and since Mreg,s is connected, this shows that one of the (G. M© ) n
Mreg has to be empty. Thus one of the M has to be empty since Mreg is dense. oF

LEMMA 6.9. (M) n t2 ç (MF). If (D(M) is closed, then equality holds.
Proof. Let x C M and (x j ) j EN a sequence in Mreg,s converging to x. Then

we can find a sequence (gj)jEN in G such that gj.Xj E MF. Since G is compact,
we may asumme that g : = limj gj exists, so that (P (g. x) e F. If -b (x) e t*, then
this implies 9 . ( x) == ( x ) and hence

The converse inclusion in the case of lIl ( M ) closed is trivial. D

REMARK 6.10. The map : MF --- t*(F) gives rise to local convexity data
(GX)XEMF by Lemma 6.6(ii) and Theorem 2.3. On the other hand there is no reason
to believe that O ] M is proper even if is. In fact, examples show that this is not
so since if l&#x3E;IMF is proper, then (MF) is a closed subset of algintF and hence
also (M) n t+ has to be a closed subset of algint F which in general is not true.
D

PROPOSITION 6.11. Let q: X --+ V be a locally fiber connected map and
(G x )XEX a local convexity data for P. Suppose D is any closed convex subset of
V which is locally polyhedral and set Y = q-l(D). Then Wly: Y - V together
with y r-+ Gy n Lw(y)(D) is a local convexity data.
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Proof. If (U x )XEX is a collection of (suitably small) neighborhoods of x E X
satisfying (LC) and (0) for W : X - V, then their intersections Ux n Y satisfy
(LC) and (0) for IV 1 y: Y - V. In fact, let x E Y and U’ Ç U n Y be open in Y.
Then there exists an open set U Ç U in X with U n Y = U’ and

is open in Cx n Lw(x)(D), where we assume Ux so small that

This proves (0) and (LC) is trivial since Y is a union of fibers of . D

LEMMA 6.12. The set 4l ( MF ) is convex.
Proof. Recall that the map IMF: MF - t*(F) provides us with the local

convexity data (ex )XEMF’ Choose an ascending sequence of closed convex cones
Dj C algint F with

To see that such a sequence exists, take a sequence fj E algint F with fj 2013 0 and

fj E fj+i + algint F. Then set Dj fj + F.
Then we can apply Proposition 6.11 to the closed sets Yi := -l(Dj) C M,

and then apply Theorem 3.10 to the connected components of the Yj. This works
since Yj is closed in M and hence the restriction of lIl to Yj is proper. Since MF is
connected, we can find an ascending sequence of connected components Yj’ of the
Yj’s such that

Now Theorem 3.10 shows that the 4) Yj) form an ascending sequence of closed
convex subsets of algint F. This implies that

is convex. E

We now have our strengthened version of Kirwan’s convexity theorem.

THEOREM 6.13. Let G x M ---+ M be a Hamiltonian action of a compact group
G on a connected symplectic manifold M such that the corresponding moment map
: M - g* is proper. Then for any Cartan subalgebra t of 9 and any choice of a
closed Weyl chamber t+ the set ( M ) n t+ is convex.
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Proof. We only need to apply Lemma 6.9 to prove the convexity of 4&#x3E; (M . )nt*
from the convexity of (MF). D

For the next result we assume that our symplectic manifold M is compact. Let
(DT: M - t* be the moment map for the (restricted) action of the maximal torus T
of G on M. If p: t* - t* is the canonical projection this means that (DT = p o (b.

LEMMA 6.14. Let ExtPT( M) be the set of extreme points of (DT(M). Then

Proof. The local convexity theorem (more precisely, the local normal form
for Hamiltonian torus actions) implies that for f E Ext(DT(M) the set (DT’(f)
consists of T-fixed points. But then

consists of T-fixed points in t*, i.e., is contained in t*. This says that for x e M
with PT( x) = f we have b(x) = DT(X) = f which clearly implies the claim. D

REMARK 6.15. For each x CM we have K-4)(x) ni* 0. Moreover-b(m) n
t* ç T(M). D

The following proposition has been proved in a special case by Amal and
Ludwig (cf. [AL92, Prop. 17] and [Ne93f]).

PROPOSITION 6.16. The following statements are equivalent.
(1) (M) is convex.
(2) (D(M) n t* is convex.
(3)’*T(M) = O(M) n t*.
Proof. Clearly (1) implies (2). Also (2) implies (3) because of Lemma

6.14. Thus it only remains to show that (3) implies (1). So we assume (3) and
note that Remark 6.15 shows that in this case (P(M) = K.(DT(M). Now let
x E conv (&#x26;(M)) C t*. Then there exists a k E K such that

Now we calculate

which proves x E li .T(M) _ (M) and hence the claim. D
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