Théorème de Lindemann-Weierstrass pour les modules de Drinfeld
Compositio Mathematica, Volume 95 (1995) no. 1, pp. 1-42.
@article{CM_1995__95_1_1_0,
     author = {Thiery, A.},
     title = {Th\'eor\`eme de {Lindemann-Weierstrass} pour les modules de {Drinfeld}},
     journal = {Compositio Mathematica},
     pages = {1--42},
     publisher = {Kluwer Academic Publishers},
     volume = {95},
     number = {1},
     year = {1995},
     mrnumber = {1314695},
     zbl = {0839.11025},
     language = {fr},
     url = {http://archive.numdam.org/item/CM_1995__95_1_1_0/}
}
TY  - JOUR
AU  - Thiery, A.
TI  - Théorème de Lindemann-Weierstrass pour les modules de Drinfeld
JO  - Compositio Mathematica
PY  - 1995
SP  - 1
EP  - 42
VL  - 95
IS  - 1
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1995__95_1_1_0/
LA  - fr
ID  - CM_1995__95_1_1_0
ER  - 
%0 Journal Article
%A Thiery, A.
%T Théorème de Lindemann-Weierstrass pour les modules de Drinfeld
%J Compositio Mathematica
%D 1995
%P 1-42
%V 95
%N 1
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1995__95_1_1_0/
%G fr
%F CM_1995__95_1_1_0
Thiery, A. Théorème de Lindemann-Weierstrass pour les modules de Drinfeld. Compositio Mathematica, Volume 95 (1995) no. 1, pp. 1-42. http://archive.numdam.org/item/CM_1995__95_1_1_0/

[A] Bosch- Gunzter- Remmert: Non Archimedean Analysis, Springer, 1984. | MR | Zbl

[B] A. Borel: Linear Algebraic Groups, W.-A. Benjamin, 1969. | MR | Zbl

[C] W.D. Brownawell: Some remarks on semi-resultant, Academic Press, London, 1977, pp. 205-210. | MR | Zbl

[D] L. Denis: Théorème de Baker et modules de Drinfeld (thèse).

[H] R. Hartshorne: Algebraic Geometry, Springer, 1977. | MR | Zbl

[L] S. Lang: Algebra, Addison-Wesley, 1967. | MR | Zbl

[P 1] P. Philippon, Critère d'indépendance algébrique en caractéristique finie, à paraître.

[P2] P. Philippon: Lemmes de zéros dans les groupes algébriques commutatifs, Bull. Soc. Math. France 114 (1986) 355-383. | Numdam | MR | Zbl

[Y 1] J. Yu: Transcendence in finite characteristic, the arithmetic of function fields. Proceedings of the workshop at the Ohio State University, June 1991, W. de Gruyter. | MR | Zbl

[Y2] J. Yu: Transcendence and Drinfeld modules, Invent. Math. 83 (1986) p. 507-517. | MR | Zbl