On the infinite volume Hecke surfaces
Compositio Mathematica, Tome 95 (1995) no. 3, pp. 247-262.
@article{CM_1995__95_3_247_0,
     author = {Schmidt, Thomas A. and Sheingorn, Mark},
     title = {On the infinite volume {Hecke} surfaces},
     journal = {Compositio Mathematica},
     pages = {247--262},
     publisher = {Kluwer Academic Publishers},
     volume = {95},
     number = {3},
     year = {1995},
     mrnumber = {1318087},
     zbl = {0838.30039},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1995__95_3_247_0/}
}
TY  - JOUR
AU  - Schmidt, Thomas A.
AU  - Sheingorn, Mark
TI  - On the infinite volume Hecke surfaces
JO  - Compositio Mathematica
PY  - 1995
SP  - 247
EP  - 262
VL  - 95
IS  - 3
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1995__95_3_247_0/
LA  - en
ID  - CM_1995__95_3_247_0
ER  - 
%0 Journal Article
%A Schmidt, Thomas A.
%A Sheingorn, Mark
%T On the infinite volume Hecke surfaces
%J Compositio Mathematica
%D 1995
%P 247-262
%V 95
%N 3
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1995__95_3_247_0/
%G en
%F CM_1995__95_3_247_0
Schmidt, Thomas A.; Sheingorn, Mark. On the infinite volume Hecke surfaces. Compositio Mathematica, Tome 95 (1995) no. 3, pp. 247-262. http://archive.numdam.org/item/CM_1995__95_3_247_0/

[Be] A. Beardon, The Geometry of Discrete Groups. Graduate Texts in Mathematics 91 (New York: Springer-Verlag) 1983. | MR | Zbl

[Bu] P. Buser, Geometry and Spectra of Compact Riemann Surfaces. Progress in Mathematics 106 (Boston: Birkhäuser) 1992. | MR | Zbl

[C] C. Croke, Rigidity for surfaces of non-positive curvatures, Comm. Math. Helv. 65 (1990) 150-169. | MR | Zbl

[CF] T. Cusick and M. Flahive, The Markoff and Lagrange Spectra, Math. Surveys and Monographs 30 (Providence: AMS) 1989. | MR | Zbl

[F] B. Fine, Trace classes and quadratic forms in the modular group, Can. J. Math., to appear. | MR | Zbl

[H] A. Haas, Diophantine approximation on hyperbolic Riemann surfaces, Acta Math. 156 (1986) 33-82. | MR | Zbl

[H2] A. Haas, Geometric Markoff theory and a theorem of Millington, in: A. Pollington and W. Moran (eds.) Number theory with an emphasis on the Markoff Spectrum (New York: Dekker) (1993) pp. 107-112. | MR | Zbl

[H-S] A. Haas and C. Series, Hurwitz constants and diophantine approximation on Hecke groups, JLMS (2) 34 (1986) 219-234. | MR | Zbl

[L] S. Lalley, Mostow rigidity and the Bishop-Steger dichotomy for surfaces of variable negative curvature, Duke Math. J. 68 (1992) 237-269. | MR | Zbl

[R] D. Rosen, A class of continued fractions associated with certain properly discontinuous groups, Duke Math. J. 21 (1954) 549-563. | MR | Zbl

[S-S] T. Schmidt and M. Sheingorn, Length spectra for Hecke triangle surfaces, Math. Z., to appear. | MR | Zbl

[S] M. Sheingorn, Low height Hecke triangle group geodesics, Cont. Math. 143 (1993) 545-560. | MR | Zbl

[W] J. Wolfart, Diskrete deformation fuchsscher gruppen und ihrer automorphen formen, J. f.d.r.u.a. Math. 348 (1984) 203-220. | MR | Zbl