@article{CM_1995__95_3_309_0, author = {Singh, Balwant}, title = {The {Picard} group and subintegrality in positive characteristic}, journal = {Compositio Mathematica}, pages = {309--321}, publisher = {Kluwer Academic Publishers}, volume = {95}, number = {3}, year = {1995}, mrnumber = {1318090}, zbl = {0858.13001}, language = {en}, url = {http://archive.numdam.org/item/CM_1995__95_3_309_0/} }
Singh, Balwant. The Picard group and subintegrality in positive characteristic. Compositio Mathematica, Tome 95 (1995) no. 3, pp. 309-321. http://archive.numdam.org/item/CM_1995__95_3_309_0/
[1] Algebraic K-Theory, Benjamin, New York, 1968. | MR | Zbl
,[2] The Picard group of a reduced G-algebra, J. Pure Appl. Algebra 59 (1989) 237-253. | MR | Zbl
,[3] On the Picard group of a class of nonseminormal domains, Comm. Algebra 18 (1990) 3263-3293. | MR | Zbl
and ,[4] Seminormal graded rings and weakly normal projective varieties, Int. J. Math. Sci. 8 (1985) 231-240. | MR | Zbl
and ,[5] Commutative Algebra, Benjamin-Cummings, New York (1980). | MR | Zbl
,[6] Roberts and Balwant Singh, Finiteness of subintegrality, In P. G. Goerss and J. F. Jardine (eds.) Algebraic K-Theory and Algebraic Topology pp. 223-227, Kluwer Acad. Publ. 1993. | MR | Zbl
[7] Subintegrality, invertible modules and the Picard group, Compositio Math. 85 (1993) 249-279. | Numdam | Zbl
, and ,[8] On seminormality, J. Algebra 67 (1980) 210-229. | MR | Zbl
,