Equivariant sheaves on toric varieties
Compositio Mathematica, Tome 96 (1995) no. 1, pp. 63-83.
@article{CM_1995__96_1_63_0,
     author = {Lunts, Valery},
     title = {Equivariant sheaves on toric varieties},
     journal = {Compositio Mathematica},
     pages = {63--83},
     publisher = {Kluwer Academic Publishers},
     volume = {96},
     number = {1},
     year = {1995},
     mrnumber = {1323725},
     zbl = {0865.18007},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1995__96_1_63_0/}
}
TY  - JOUR
AU  - Lunts, Valery
TI  - Equivariant sheaves on toric varieties
JO  - Compositio Mathematica
PY  - 1995
SP  - 63
EP  - 83
VL  - 96
IS  - 1
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1995__96_1_63_0/
LA  - en
ID  - CM_1995__96_1_63_0
ER  - 
%0 Journal Article
%A Lunts, Valery
%T Equivariant sheaves on toric varieties
%J Compositio Mathematica
%D 1995
%P 63-83
%V 96
%N 1
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1995__96_1_63_0/
%G en
%F CM_1995__96_1_63_0
Lunts, Valery. Equivariant sheaves on toric varieties. Compositio Mathematica, Tome 96 (1995) no. 1, pp. 63-83. http://archive.numdam.org/item/CM_1995__96_1_63_0/

[ABV] J. Adams, D. Barbasch, D. Vogan: The Langlands classification and irreducible characters of real reductive groups, Birkhauser, 1992. | MR | Zbl

[BL] J. Bernstein, V. Lunts: Equivariant sheaves and functors, LNM 1578, 1994. | MR | Zbl

[D] P. Deligne, Cohomologie a supports propres (SGA4), LNM 305. | Zbl

[GM] S.I. Gelfand, Yu.I. Manin: Methods of homological algebra, Volume 1, Nauka, Moscow 1988 (in Russian). | MR | Zbl

[Go] R. Godement: Topologie algebrique et theorie des faisceaux, Hermann, Paris, 1958. | MR | Zbl

[KKMS-D] G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat: Toroidal embeddings I, LNM 339. | Zbl

[S] W. Soergel: Langlands' philosophy and Koszul duality, preprint 1992. | MR

[Sp] N. Spaltenstein: Resolutions of unbounded complexes, Compositio Mathematica (65) 121-154 (1988). | Numdam | MR | Zbl

[Ve] J.-L. Verdier:Categories Derivees, LNM 569. | Zbl