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Mumford’s theory of stability, when applied to varieties over number fields, has
interesting consequences, as was shown in recent years by several authors [12], [5],
[13], [3], [16], [20]. In this paper, we use it to get informations on the successive
minima of the lattice of sections of bundles on arithmetic varieties.

More precisely, let E be a projective module of rank N over the ring of integers
in a number field K, and Ehr = Hom(E, K). Consider a closed subvariety XK C
P(EVK) in the projective space of lines in EK. Fix a hermitian metric on E 0s C.
Bost proved in [3] that Chow semi-stability of X K in P( EÀ) implies a lower bound
for the height of XK (see 3.1 below). By a différent method we show that the proof
that Xh is semi-stable gives, in some cases, a stronger inequality (see however the
remark in 3.1.2) which involves the successive minima of E. Our general result,
Theorem 1, can be applied to surfaces of general type, Theorem 3, using the work
of Gieseker [7], and to line bundles on smooth curves, Theorem 4, using the work
of Morrison [14]. A variant of Theorem 1 gives results for rank two stable bundles
on curves, Theorem 5, by using the work of Gieseker and Morrison [8]. Finally, we
derive another inequality for successive minima on arithmetic surfaces, Theorem
6, from the vanishing theorem proved in [16].

I thank J.-B. Bost, J.-F. Bumol, I. Morrison, I. Reider, E. Ullmo and S. Zhang
for helpful discussions, and the referee for pointing out several inaccuracies.

1. Preliminaries

1.1. Let M be a free Z-module of finite rank and ~·~ a norm on the complex
vector space M 0s C. We equip M 0s M with the Haar measure for which the
unit ball has volume equal to the volume of the standard euclidean ball of the same
dimension and we let covol(M ~Z R/M) be the covolume of M in M ~Z R for
that measure. We then define the Euler characteristic of (M, ~·~) to be the real
number X(M, Il.11) = -log covol(M ~Z R/M).

Clearly, if is another norm on M 0s C such that ~x~  ~x~’ for all
x E M 0s C, we have

1.2. Let K be a number field, of degree [K : Q], let C?K be its ring of integers, let
S = Spec(OK) be the associated scheme, let E be the set of complex embeddings
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of Il and let Dh be the discriminant of K over Q. These notations will be valid
throughout this paper.

If M is a torsion free OK-module of finite rank such that, for all 0, e S, the
corresponding complex vector space M03C3 = M ~OK C is equipped with a norm
1 . 1,, we may think of M as a free Z-module equipped with the norm |·| on
M ~Z C = (fJu Ma defined by

In particular, consider an hermitian vector bundle (E, h) over S, in the sense
of [9]. In other words, E is a torsion free OK-module of finite rank and, for all
(1 e 03A3, Eu is equipped with an hermitian scalar product h, compatible with the
isomorphism E03C3 ~ E03C3 induced by complex conjugation. We will then denote by
Il - lIu the associated norm on E, and ~·~ the norm on E 0z C defined as above.
Also we let deg(E, h) e R be the arithmetic degree of (E, h), which can be
computed as follows. Let N be the rank of E and 039BNE its top exterior power. We
equip 039BNE with the metric induced by h : if vl, ... , vN, wl, ... , wN lie in E,

We have then

On the other hand, if (L, h) is an hermitian line bundle on S, and if s E L is any
nontrivial section, denote by [L : OKs] the index in L of the submodule generated
by s. We have

1.3.

LEMMA 1. Let ~ : E - M be a morphism of torsion free OK -modules of finite
type, h a hermitian metric on E, with associated norm Il . ~03C3 on Ea, and 1 . /0- a
norm on each Ma, a E S. We assume that, for all x E Ea, |~(x)|03C3  llxll,.
If x1,..., xN in E are such that ~(x1),..., ~(xN) is a basis of M ~OK K, the
following inequality holds:
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Proof. Let Il · ~’03C3 be the norm induced from Il . 110- by the projection map
E03C3 ~ Mo-. Since |·|03C3  !! - ~’03C3 we deduce from 1.1 that ~(M, |·|)  X(M, /1. ~’),
so we may assume that 1 . /0- = /1 . ~’03C3. Furthermore, /1 . ~’03C3 is the norm coming from
the hermitian metric h’ induced by Eo- on Mo, and ~~(xi)~’  ~xi~, so we may
assume that (M, ~·~’) = (E, ~·~).
We know that

(e.g. [4], (2.1.13)). The element s = x 1 039B···039B XN of 039BNE is nonzero, so we get,
by Hadamard inequality,

The Lemma 1 follows from this.

1.4. Let (E, h) be a hermitian vector bundle of rank N over S. For any integer
i  .N we let Ai be the infimum of the set of real numbers À such that there exist
Vt, ... , vi in E, linearly independent over Il and such that ~v03B1~  03BB, 1  03B1  i.

These are the successive minima of (E, h). We can choose x1,...,xN E E,
linearly independent over K, such that ~xi~ = 03BBN-i+1·

If we let

and

it follows from Bombieri-Vaaler’s version of Minkowski’s theorem on successive
minima that

where C(N, K) is the following constant
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where r 1 and r2 are the number of real and complex places of K, and Yn is the
standard euclidean volume of the unit ball in RI (see [4], 5.2.3).

1.5. The OK-module ws = HomZ(OK, Z) is locally free of rank one. We fix an
hermitian metric on ws by deciding that the trace morphism Tr E Ws has norm
itri, = 1 (resp. ITriq = 2), if 03C3 = 03C3 (resp. 03C3 ~ 03C3).

Let (E, h) be a hermitian vector bundle of rank N on S. We denote by
E’ = Hom(E, OS) its dual and we equip E’ = Ev ~OS cas with the tensor
product of the metric dual to h on EV with the chosen metric on ws. If x = 03A303C3~03A3x03C3
lies in E’ ~Z C = ~03C3E’03C3 we let

The Z-modules underlying E and E’, equipped with the norms ~·~ and Il - ~’,
are then dual to each other (see e.g. [10], 2.4.2). Let ai be the successive minima
of (E, ~ · Il) and 03BB’i those of (E’, ~ · Il’), 1  i  n = rkz(E) = [K : Q]N.
In other words, Ai is the infimum of the real numbers 03BB  0 such that there exist
v1,..., vi e E, linearly independent over Z, with ~v03B1~  03BB for all 03B1  i.

From [1] Theorem 2.1 and John theorem, as in op. cit. Section 3, we get the

inequalities

2. The main result

2.1. Let (E, h) and xl, ... , xN be as in 1.4 above, let E’ = Hom(E, OS) be the
dual of E, and let P(EV) be the associated projective space (representing lines in
Ev). 

Consider a closed subvariety Xh C P(EVK) of dimension d over K. We let
deg(XK) E N be its (algebraic) degree anq-h XK) e R its Faltings height,
denoted hF (XK) in [4], (3.1.1 ) and (3.1.5). If O( 1 ) is the canonical line bundle on
P(EV) equipped with the metric induced from h, and if X is the Zariski closure of
XK in P(EV), we have from [4], loc. cit.,

When m is large enough, m  mo say, the cup-product map

is surjective, so that H0(XK, O((m)) is generated by the monomials
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03B11 + ··· + aN = m. A special basis is a basis of HD(XK, 0(m» made of such
elements.

Assume N real numbers r1,..., rN are given, and let r = ( r 1, ... , rN). We
define the weight of xi to be ri, 1  i x N, the weight of a monomial in E~mK to
be the sum of the weight of the x2’s occurring in it, and the weight of a monomial
u e H0(XK, O( m )) to be the minimum wtr ( u ) of the weights of the monomials
in the x i’s mapping to u by lp. The weight wtr(03B2) of a special basis 03B2 is the sum of
the weights of its elements, and wr(m) is the minimum weight of a special basis
of H0(XK, O(m)).

When r 1, ... , rN G N, there is a natural integer er such that, as m goes to
infinity,

([14], Corollary 3.3).

THEOREM 1. Assume there exists a continuous function 03C8 : RN ~ R such
that 1/;( tx) = t1/;( x ) for all t ~ R and x ~ RN, and such that er  1/;( r) when
r1  r2  ···  rN = 0 are integers. Then the following inequality holds:

2.2. Our first step to prove Theorem 1 is the following. Fix real numbers - &#x3E; 0

and r1  r2  ···  rN = 0. Then there exists a constant C such that, for any
positive integer m  mo,

Indeed we may choose a positive real number q &#x3E; 0 and rational numbers si = pi/q
with p1  p2  ···  PN = 0, 1 si - T2I  77, and 03C8(s)  03C8(r) + E/2.
If m  mo and if 03B2 is any special basis of H0(XK, 0(m» we have

By the usual theory of Hilbert polynomials,
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Therefore

Since ws(rn) = wp(m)/q and 1/;( s) = 03C8(p)/q, we get from our hypothesis on 0
the inequality

hence

If q is small enough this means that

i.e. (4) holds.

2.3. Given m  mo we let M = H°(X, O(m)). If cr E E, denote by X, the
corresponding set of complex points of XK. We equip M, = HO(X,, O(m))
with the sup norm on X03C3:

where ~·~03C3 is the norm on O(1)~m induced by E. The morphism

is then norm decreasing. If u = ~(x~03B111 ~···~ x~03B1NN) is a monomial, we have

Let

Then r1  r2  ···  rN = 0 and the previous inequalities imply
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By definition of wtr(u), for any s’ &#x3E; 0 we may find x with ~(x) = u and

Applying Lemma 1 we conclude from this that for any special basis 03B2 of M

hence

Using (4) and (5) we deduce that

On the other hand, by a result of Zhang, [ 19] Theorem 1.4, we have

Comparing with (6) for all 03B5 &#x3E; 0, we get the inequality (3).

3. Applications

3.1. CHOW SEMI-STABILITY

3.1.1. We keep the notations of Section 2.1 and dénote by XK = XK 0 K le the
projective variety obtained from XK by extending scalars from K to an algebraic
closure K. Let E’k == EV ~OK K.
THEOREM 2. Assume that the projective variety XK c P(EVK) is Chow semi-
stable. Then

Proof. Let Y be the subspace of Eh generated by x1,..., xi, 1  i  N. If

r1  r2  ···  rN = 0 are integers, it follows from Mumford’s criterion for
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semi-stability, [15] Theorem 2.9 applied to the weighted flag (Vi, ri ) and from
[14] Corollary 3.3 that

Therefore we may apply Theorem 1 with

We get

i.e. (7) holds.

3.1.2. Using (1) we deduce from Theorem 2 the following
COROLLARY. Under the assumptions of Theorem 2,

This inequality is Bost’s Theorem 1 in [3], except that the constant on the right
hand side of this inequality is different from the one in loc. cit. (which is a constant
multiple of [K : Q]). In order to get a constant multiple of [K : Q] one could try
to replace the successive minima Mi, 1 x i x N, by the slopes of the canonical
polygon of Stuhler [17] and Grayson [11]. It is mentioned in [3] 4.3 that the
inequality of loc. cit. can be applied to stable bundles on curves, surfaces of
general type and abelian varieties.

3.2. SURFACES OF GENERAL TYPE

Let Y be a smooth surface of general type defined over K and n  5 a fixed
integer. The nth power L of the canonical line bundle on Y has then no base point
[2]. With the notations of 2.1, we assume that Ex = H°(Y, L) and that XK is the
image of the morphism Y - P(H0(Y, L)V).
THEOREM 3. If n is big enough, the following inequality holds:
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Proof. This result follows from Theorem 1 and Gieseker’s work [7]. Indeed,
let r(1)  r(2)  ···  r(N) be relative integers such that 03A3Ni=1r(i) = 0. Denote
by cl(Y)2 the (algebraic) self intersection of the canonical line bundle on Y. Let
p  1 and M » 0 be integers and m = M(p+1). Then, according to [7], Lemma
6.6, Lemma 5.15, Definition 5.3 and Section 2, the vector space HO(XK, Lom)
has a distinguished basis of weight at most

with respect to (r(1),...r(N)), as M goes to infinity. If r1  r2  ···  rN = 0
are integers, we let r(i) = rN-i+1 - (03A3Ni=1ri/N). We get er  03C8(r) with

hence Theorem 3 follows from Theorem 1.

4. Smooth curves

4.1. We keep the notations of Section 2.1.

THEOREM 4. Assume that XK C P(EVK) is a smooth geometrically irreducible
curve of genus g and degree do = deg(XK)  2g+1. Then the following inequality
holds when EK = HO(XK, O(1)):

Proof. By a result of Morrison, [14] Theorem 4.4, the hypotheses of Theorem
1 are satisfied with

(as noticed by the referee, the computation in [14], loc. cit., is not correct; the
constant above is what comes out instead). Since N = h0(XK, O(1)) = d0+1-g,
we get from (3) the inequality
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i.e. (8) holds.

REMARK. Another way to prove (8), which does not use Zhang’s result [ 19] The-
orem 1.4, consists in comparing the height of XK with the height of its projections
to P(VVi), where Vi C .Eh is the subspace generated by x l , ... , xi, 1  i  N. One

may then combine [4] 3.3.2 with Morrison’s combinatorial results, [14] Corollary
4.3 and Theorem 4.4, to obtain the inequality (8).

4.2. We shall now consider vector bundles of rank two on curves. Let Xh be a
smooth geometrically irreducible curve of genus g  2 over K, let F be a rank two
vector bundle on Xh of degree do (big enough with respect to g), let L = A2F be
the second exterior power of F, and let FR be its restriction to XR. Assume (E, h)
is an hermitian vector bundle on S such that Eh = HD(XK, F). According to
[8], Lemma 3.2, the map

is surjective. Therefore the lattice E’ = e(A2E) is such that Eh = HO(XK, L),
and we let h’ be the metric induced by h on E’. We let h(XK) be the height of XK
for the projective embedding Xk C P(H0(XK, L)v), with respect to (E’, h’).
Denote by 03BB1,..., 03BBN the successive minima of (E, h), N = h°(Xx, F) =
do + 2 - 2g, Pi = log03BBi, 1  i x N, and

THEOREM 5. There exists a positive constant a(g, do) and an integer D such
that if do &#x3E; D and the bundle FR is stable the following inequality holds

furthermore, if do &#x3E; D and FK is semi-stable, then

Proof. Theorem 5 follows from [8] by a method similar to Theorem 1. Choose
x1,...,xN E E, linearly independent over Il , such that ~xi~ = 03BBN-i+1. Consider
the morphism

where X is the Zariski closure of XK in P(E’V), obtained by cup-product from the
canonical morphism
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When m is big enough, the image of ~ has maximal rank over K. Given a set of
N real numbers r = (ri,..., rN), we define the weight of Yij == x 039B xj E 039B2E
to be ri + rj, 1 x 1 ~ j  N. The weight of a monomial yi1j1 0 Yi2j2 0 ... 0
yimjm ~ (039B2E)~m is the sum of the weights of its factors, a special basis 03B2 of
H0(XK, 0(m» is a basis made of the images by ~ of some of these monomials.
We define its weight wtr(03B2) as in 2.1, and wr(m) is the minimum weight of a
special basis of H0(XK, O(m)). When m goes to infinity

From the proof of [8], Theorem 5.1, it follows that, if r1  r2  ···  rN = 0
are rational numbers such that ri + r2 + ··· + rN = 1 and if FK is stable (resp.
semi-stable) and do is big enough, we have

(resp. er x 4do/N) for some positive constant a(g, do). As in 2.2, we deduce from
this that if r1  r2  ···  rN = 0 are real numbers, then

with

If we equip M = H0(X, O(m)) with the sup-norm coming from the metric
induced by E’ on L, and if u = ~(yi1j1 ~ Yi2j2 0 ... ~ yimjm) is a decomposable
element, we have

it follows that
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Therefore, using Lemma 1 as in 2.3, we get

Since

it follows from (9), (10) and [19] Theorem 1.4 as in 2.3, that

if Fk is stable, and

if FR is semi-stable. This proves Theprem 5.

REMARK. From the proof of [8] Theorem 5.1, one can derive the following
estimate:

4.3. The vanishing theorem of [16] provides more information on the successive
minima of sections of line bundles on curves. Namely, let f : X ~ S be a semi-
stable curve over S, with geometrically irreducible generic fiber XK. Consider a
line bundle L on X of degree m  2 on XK. Choose an hermitian metric h on L
with positive first Chem form cl(L, h).
We assume that the arithmetic degree of L = (L, h) on any irreducible divisor

of X is nonnegative, and we let L2 e R be the arithmetic self-intersection cl(L)2
of the first Chem class of L.
We equip the tangent space ofX(C) with the metric whose associated (normal-

ized) Kahler form is e 1 (L, h)/m, and the relative dualizing sheaf wx/s with the
dual metric.

The OK-module E’ = HO(X, L 0 wxls) is then equipped with the L2-
metric. If x = £ae£za lies in E’ 0s C we let Ilxll’ = 03A303C3~03A3~x03C3~L2. Let
n = [K : Q]h0(XK, L ~ wxls) be the rank of E’ over Z, 03BB’n the top successive
minimum of (E’, ~ · Il’) and 03BC’n = log03BB’n.
THEOREM 5.

(a) Under the above assumptions, the following inequality holds
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(b) Assume furthermore that XK has genus g  2, that 03C9X/S is equipped with the
Arakelov metric, and that L is the k-th power o!wx/s, k  1. Then

Proof. By Serre duality, if we let L-1 be the dual of L, the quotient of the OK -
module H1(X, L-1) by its torsion subgroup, when equipped with the L2-metric,
is the dual of H0(X, L ~ 03C9X/S) over S. Let WS be as in 1.5 above, let À be the
smallest norm ~v~ = Sup03C3~v03C3~L2 of nonzero vectors v in

and let 03BC1 = log al. From (2) we know that

Let M = L 0 f*03C9-1S be equipped with the tensor product of the chosen metrics.
Using [10], p. 355, we compute

where

is the arithmetic degree of ws.
Similarly, let P E X(K) be an algebraic point on XK, defined on a finite

extension Il’ of K, and u : Spec(OK’) ~ X the morphism defined by P. The
normalized height of P with respect to M is then

From our hypotheses on L we get

In case (a), we may then apply [16] Theorem 2 to get
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The inequality (11) follows from (13) and (14). Similarly, in case (b), we get as in
[16] Theorem 3 that

and (12) follows from (13) and (15).

REMARK. Since n is an affine function of k, Theorem 5(b) implies that an goes to
zero as k goes to infinity. As was noticed by Ullmo, this proves that, if k j k0, the
lattice H°(X, 03C9~k+1X/S) contains a set of sections of L2-norm less than one which
has maximal rank. This also follows from Zhang’s result [18] Theorem 1.5, but
this proof is effective in the sense that k0 can be evaluated from (12).
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