Computing Iwasawa modules of real quadratic number fields
Compositio Mathematica, Tome 97 (1995) no. 1-2, p. 135-155
@article{CM_1995__97_1-2_135_0,
     author = {Kraft, James S. and Schoof, Ren\'e},
     title = {Computing Iwasawa modules of real quadratic number fields},
     journal = {Compositio Mathematica},
     publisher = {Kluwer Academic Publishers},
     volume = {97},
     number = {1-2},
     year = {1995},
     pages = {135-155},
     zbl = {0840.11043},
     mrnumber = {1355121},
     language = {en},
     url = {http://www.numdam.org/item/CM_1995__97_1-2_135_0}
}
Kraft, James S.; Schoof, René. Computing Iwasawa modules of real quadratic number fields. Compositio Mathematica, Tome 97 (1995) no. 1-2, pp. 135-155. http://www.numdam.org/item/CM_1995__97_1-2_135_0/

[1]] Candiotti, A.: Computations of Iwasawa invariants and K 2, Compositio Math., 29 (1971), 89-111. | Numdam | MR 384746 | Zbl 0364.12003

[2] Cassels, J.W.S. and Fröhlich, A.: Algebraic Number Theory, Academic Press, London 1967. | MR 215665 | Zbl 0153.07403

[3] Gras, G. and Gras, M.-N.: Calcul du nombre de classes et des unités des extensions abéliennes réelles de Q, Bulletin des Sciences Math. 101 (1977), 97-129. | MR 480423 | Zbl 0359.12007

[4] Greenberg, R.: On the Iwasawa invariants of totally real number fields, American J. of Math. 98 (1976), 263-284. | MR 401702 | Zbl 0334.12013

[5] Greenberg, R.: A note on K2 and the theory of Zp-extensions, American J. of Math. 100 (1978), 1235-1245. | MR 522698 | Zbl 0408.12012

[6] Kraft, J.S.: Iwasawa invariants of CM fields, Journal of Number Theory 32 (1989), 65-77. | MR 1002115 | Zbl 0697.12004

[7] Mazur, B. and Wiles, A.: Class fields of abelian extensions of Q, Invent. Math. 76 (1984), 179-330. | MR 742853 | Zbl 0545.12005

[8] Schoof, R.: Class numbers of Q(cos(2π/p)), in preparation.

[9] Schoof, R.: The structure of minus class groups of abelian number fields, 185-204, in C. Goldstein, Séminaire de Théorie de Nombres, Paris 1988-1990, Progress in Math. 91, Birkhäuser 1990. | MR 1104706 | Zbl 0719.11074

[10] Sinnott, W.: On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181-234. | MR 595586 | Zbl 0465.12001

[11] Taya, H.: Computation of Z3-invariants of real quadratic fields, Math. Comp., to appear. | MR 1333326 | Zbl 0851.11062

[12] Washington, L.C.: Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer-Verlag, Berlin, Heidelberg, New York 1982. | MR 718674 | Zbl 0484.12001