@article{CM_1995__97_1-2_295_0, author = {Stroeker, R. J.}, title = {On the sum of consecutive cubes being a perfect square}, journal = {Compositio Mathematica}, pages = {295--307}, publisher = {Kluwer Academic Publishers}, volume = {97}, number = {1-2}, year = {1995}, mrnumber = {1355130}, zbl = {0837.11012}, language = {en}, url = {http://archive.numdam.org/item/CM_1995__97_1-2_295_0/} }
Stroeker, R. J. On the sum of consecutive cubes being a perfect square. Compositio Mathematica, Tome 97 (1995) no. 1-2, pp. 295-307. http://archive.numdam.org/item/CM_1995__97_1-2_295_0/
1 Notes on elliptic curves I, Crelle 212, Heft 1/2 (1963) 7-25. | MR | Zbl
and :2 On the Equation Y2 = X(X2 + p), in: "Number Theory and Applications " (R. A. Mollin, ed.), Kluwer, Dordrecht, 1989,3-23. | MR | Zbl
:3 On the Equation Y2 = X(X2 + p), Math. Comp. 42 (1984) 257-264. | MR | Zbl
and :4 A Diophantine Equation, Glasgow Math. J. 27 (1985) 11-18. | MR | Zbl
:5 Algorithms for Modular Elliptic Curves", Cambridge University Press, 1992. | MR | Zbl
: "6 Minorations de formes linéaires de logarithmes elliptiques, Publ. Math. de l'Un. Pierre et Marie Curie no. 106, Problèmes diophantiens 1991-1992, exposé no. 3.
:7 History of the Theory of Numbers", Vol. II: "Diophantine Analysis", Chelsea Publ. Co. 1971 (first published in 1919 by the Carnegie Institute of Washington, nr. 256). | JFM | MR
: "8 Computing Integral Points on Elliptic Curves, Acta Arithm., 68 (2) (1994) 171-192. | MR | Zbl
, and :9 Elliptic Curves", Math. Notes 40, Princeton University Press, 1992. | MR | Zbl
: "10 Introduction to Elliptic Curves and Modular Forms", Springer-Verlag, New York etc., 1984. | MR | Zbl
: "11 The Arithmetic of Elliptic Curves", GTM 106, Springer-Verlag, New York etc., 1986. | MR | Zbl
: "12 Computing Heights on Elliptic Curves, Math. Comp. 51 (1988) 339-358. | MR | Zbl
:13 The difference between the Weil height and the canonical height on elliptic curves, Mat. Comp. 55 (1990) 723-743. | MR | Zbl
:14 Rational Points on Elliptic Curves", UTM, Springer-Verlag, New York etc., 1992. | MR | Zbl
and : "15 On the Equation Y2 = (X + p)(X2 + p2), Rocky Mountain J. Math. 24 (3) (1994) 1135-1161. | MR | Zbl
and :16 On the Application of Skolem's p-adic Method to the solution of Thue Equations, J. Number Th. 29 (2) (1988) 166-195. | MR | Zbl
and :17 Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms, Acta Arithm. 67 (2) (1994) 177-196. | MR | Zbl
and :18 On Elliptic Diophantine Equations that Defy Thue's Method - The Case of the Ochoa Curve, Experimental Math., to appear. | Zbl
and :19 Variation of the canonical height of a point depending on a parameter, American J. Math. 105 (1983) 287-294. | MR | Zbl
:20 On the Practical Solution of the Thue Equation, J. Number Th. 31 (2) (1989) 99-132. | MR | Zbl
and :21 Algorithms for Diophantine Equations", CWI Tract 65, Stichting Mathematisch centrum, Amsterdam 1989. | MR | Zbl
: "22 Large Integral Points on Elliptic Curves, Math. Comp. 48 (1987) 425-436. | MR | Zbl
: