@article{CM_1995__97_1-2_71_0, author = {Goldfeld, Dorian and Szpiro, Lucien}, title = {Bounds for the order of the {Tate-Shafarevich} group}, journal = {Compositio Mathematica}, pages = {71--87}, publisher = {Kluwer Academic Publishers}, volume = {97}, number = {1-2}, year = {1995}, mrnumber = {1355118}, zbl = {0860.11032}, language = {en}, url = {http://archive.numdam.org/item/CM_1995__97_1-2_71_0/} }
TY - JOUR AU - Goldfeld, Dorian AU - Szpiro, Lucien TI - Bounds for the order of the Tate-Shafarevich group JO - Compositio Mathematica PY - 1995 SP - 71 EP - 87 VL - 97 IS - 1-2 PB - Kluwer Academic Publishers UR - http://archive.numdam.org/item/CM_1995__97_1-2_71_0/ LA - en ID - CM_1995__97_1-2_71_0 ER -
Goldfeld, Dorian; Szpiro, Lucien. Bounds for the order of the Tate-Shafarevich group. Compositio Mathematica, Tome 97 (1995) no. 1-2, pp. 71-87. http://archive.numdam.org/item/CM_1995__97_1-2_71_0/
1 Elliptic curves and modular functions, in Modular Functions of One Variable IV, Lecture Notes in Math. 476, Springer-Verlag, 1975, pp. 2-32. | MR
and :2 The average rank of elliptic curves I, Invent. Math. 109 (1992), 445-472. | MR | Zbl
:3 La conjecture de Weil 1, Publ. Math. IHES 43 (1974), 273-307. | Numdam | MR | Zbl
:4 Points de torsion des courbes elliptiques, in L. Szpiro (ed.), Pinceaux de Courbes Elliptiques, Asterisque 183 (1990), 25-36. | Numdam | Zbl
and :5 Modular elliptic curves and diophantine problems, in Number Theory, Proc. Conf. of the Canad. Number Theory Assoc., Banff, C Alberta, Canada, 1988, pp. 157-176. | MR | Zbl
:6 Kolyvagin's work on elliptic curves, in L-functions and Arithmetic, Proc. of the Durham Symp., 1989, pp. 235-256. | MR | Zbl
:7 The canonical height and integral points on elliptic curves, Invent. Math. 93 (1988), 419-450. | MR | Zbl
and :8 Finiteness of E(Q) and III(E/Q) for a class of Weil curves, Izv. Akad. Nauk SSSR 52 (1988). | Zbl
:9 Values of L-series of modular forms at the centre of the critical strip, Invent. Math. 64 (1981), 175-198. | MR | Zbl
and :10 Conjectured diophantine estimates on elliptic curves, in Arithmetic and Geometry, Papers dedicated to I.R. Shafarevich on the occasion of his sixtieth birthday, Vol. I, Arithmetic, Birkhäuser, 1983, pp. 155-172. | MR | Zbl
:11 Modular curves and the Eisenstein ideal, IHES Publ. Math. 47 (1977), 33-186. | Numdam | MR | Zbl
:12 On a conjecture of Artin and Tate, Annals of Math. 102 (1975), 517-533. | MR | Zbl
:13 Discriminant et conducteur des courbes elliptiques non semi-stable, à paraitre.
and :14 Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 64 (1981), 455-470. | MR | Zbl
:15 The Arithmetic of Elliptic Curves, Graduate Texts in Math. 106, Springer-Verlag, 1986. | MR | Zbl
:16 Propriétés numériques du faisceau dualisant relatif, in Pinceaux de Courbes de Genre au Moins Deux, Asterisque 86 (1981), 44-78. | Zbl
:17 Discriminant et conducteur, in Seminaire sur les Pinceaux de Courbes Elliptiques, Asterisque 183 (1990), 7-17. | Numdam | MR | Zbl
:18 An algorithm for determining the type of a singular fiber in an elliptic pencil, in Modular Functions of One Variable IV, Lecture Notes in Math. 476, Springer-Verlag, 1975, pp. 33-52. | MR
:19 On a conjecture of Birch and Swinnerton-Dyer and a geometric analogue, Seminaire N. Bourbaki, Exposé 306, 1966. | Numdam | Zbl
:20 Ring theoretic properties of certain Hecke algebras, to appear. | Zbl
and :21 The Theory of Functions, 2nd edn., Oxford University Press, Oxford, 1939. | JFM
:22 On the conjectures of Mordell and Lang in positive characteristic, Inventiones Math. 104 (1991), 643-646. | MR | Zbl
:23 Basic Number Theory, Springer-Verlag, 1967. | MR | Zbl
:24 Modular elliptic curves and Fermat's last theorem, to appear. | Zbl
: