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Abstract. Let X be a smooth projective algebraic variety over C, and let Z be a scheme of finite type
over C, all of the connected components of which are complete normal varieties. Suppose further
that 0 : Z ~ X is a morphism whose image is a connected closed subscheme Y of X, and that
7r’g (Y) maps onto 03C0alg1(X). Let N be the normal subgroup of 03C01(X) generated by the images of
the fundamental groups of the connected components of Z. In this paper we prove results about the
finite dimensional complex representations of xi (X)/N that suggest that it is small. In particular we
prove that all the finite dimensional complex representations of 7ri (X) IN are unitary.
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1. Introduction

M. V. Nori, in his paper [13], proves the following result:

THEOREM 1.1. Let X be a smooth projective algebraic surface over the complex
numbers, let C be an irreducible nodal curve on X with r nodes, let f : C - C
be the non-singular model for C, and choose base points do for C and xo for C,
with f (do) = xo. Then if C · C &#x3E; 2r, [7rl(X, xo) : f*03C01(C, do)]  oo. Here C - C
denotes the self intersection of C on X.

This result is a consequence of Nori’s "weak Lefschetz theorem," which he
proves in [13]. The Lefschetz hyperplane theorem says that in the situation of The-
orem 1.1, 03C01(C, x0) maps onto 03C01(X, x0). Elementary arguments show, however,
that 03C01(C,x0) ~ 03C01(C, d0) * F, where F is the free group on r generators, so
that the normal subgroup of 03C01(C, x0) generated by f*(03C01(C, d0)) is of infinite
index. Theorem l.l says then that if C has sufficiently positive self-intersection,
then only a finite shadow of the infinite contribution of the singularities of C to
its fundamental group can be seen in the fundamental group of the smooth surface
X.

More generally, suppose X is any smooth projective algebraic variety over
the complex numbers, and Y is a closed connected subscheme of X such that

03C0alg1(Y, yo ) maps onto 03C0alg1(X, yo ) for some yo in Y. Suppose further that f : Z - Y
is a morphism from a scheme Z of finite type over the complex numbers, all of the
connected components of which are complete and normal varieties, onto Y. We
denote by N the normal subgroup of 7r1(X, yo) generated by images under f* of
the fundamental groups of the connected components of Z. The normal subgroup
N is independent of the choice of base points for the connected components of Z.
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Considering theorem 1.1, it is reasonable to ask whether [1rI(X, yo) : N]  oo.

If f : Z - Y is a normalization of Y, this question is again whether the con-
tribution of the non-normal singularities of Y to the fundamental group of Y can
cast more than a finite shadow on the fundamental group of X. In this paper we

prove that in general 03C01(X, yo)/N has at most finitely many isomorphism classes
of complex representations of any given finite dimension (Corollary 6.2.) In fact
we prove a stronger technical result (Theorem 6.1), which also has as a corol-
lary, as pointed out to me by Professor Nori, that the finite dimensional complex
representations of 03C01(X, yo)/N are unitary (Corollary 6.5.) These results provide
support for the belief that x 1 ( X , yo) IN may be finite, inasmuch as they show that
its finite dimensional complex representations theory shares some properties with
the representation theory of finite groups. There are, however, examples of finitely
presented infinite groups which have at most finitely many isomorphism classes of
complex representations of any given dimension, such that all these representations
are unitary. We give some of these examples in 7.

Note that there are theorems which give conditions for a closed subscheme Y
of a complex projective variety X to be connected and for the map induced by
the inclusion of Y in X to send 7r 1 (Y, yo) onto 03C01(X, yo) for any choice of base
point yo for Y. See W. Fulton and B. Lazarsfeld’s article [4]. For example, if X is
a normal and irreducible closed subvariety of Pr(C) and W is closed subvariety of
Pr(C) such that dim X + dim W &#x3E; r, then X fl W is connected and 1rI(X n W)
maps onto 03C01(X), for any choice of base points (p. 27 of [4].)

The proof of the main result (6.1) of this paper uses results from a number of
different areas of research, and once we realize the possibility of bringing them
together to cooperate, our theorem follows easily. Because of this, we devote a
substantial portion of this paper to explaining how results we use can be extracted
from the work of other authors, in the process repeating some of their work. In
Section 2 we discuss schemes of representations of a finitely generated group, and
give proofs of facts about the relation of the tangent spaces of these schemes to
group cohomology. In this section we follow Weil’s papers [ 18] and [19]. Section 3
is concemed with results of C. Simpson in [ 15] and [16] about those representations
of the fundamental group of a smooth projective variety over the complex numbers
which underlie variations of Hodge structure, considered as points on the moduli
spaces of semi-simple complex local systems on the variety. We give definitions of
variations of Hodge structure and of the moduli space of semi-simple complex local
systems in that section. Section 4 is devoted to an application we make of ideas
of P. Deligne and B. Saint-Donat in [14], previously applied in Deligne’s papers
[3]. Finally, in Section 5 we discuss P. Griffiths’ classifying spaces for polarized
real Hodge structures (see [5]), which we use to prove Corollary 6.5. Again, we
give the relevant definitions in the section itself. By including these sections as
the bulk of the paper, and only proceeding with the proof of Theorem 6.1 after the
necessary aspects of previous work are isolated, I hope to clarify how research in
diverse areas cooperates to give the main theorem. Also, since many readers are
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likely to be unfamiliar with some of the results which we use, I hope that these
sections will help them to more completely understand the proof of the main result
without an extensive search through the literature.

l’d like to thank Professor Nori, who first suggested to me the essential outline
of the proof of Theorem 6.1 in the case where Y is a curve with only normal
crossings for singularities and with positive self-intersection on a surface X, and
Z is its normalization. The proof of Theorem 6.1 is based on this outline. I’d also
like to thank Proféssor Alex Lubotzky for a number of helpful conversations.

2. Schemes of representations

In this section we recall work of Weil in [ 18] and [ 19] on schemes of representations
of a finitely generated group. The main result of this section, which we employ in
the proof of Theorem 6.1, is Proposition 2.6. In addition to the papers of Weil, the
memoir [10] offers a good discussion of these results. This memoir is our primary
source for this section, and any proofs we omit here may be found in the first two
sections of [10].

DEFINITION 2.1. Let G be a finitely generated group and let n be a positive
integer. Let {03B31,..., qr) be a generating set for G, and let f rqlqEQ be a defining
set of relations for G for some index set Q. Let A = C[xij.det(xij)-1] be the
coordinate ring of GLn ((C), where x ij denotes the i j coordinate function on GLn (C)
for 1  i, j  n. Denote the coordinate functions corresponding to the kth factor
in A0r by x(k)ij, and let X(k) be the matrix (x(k)ij) in Mn(A0r). Then each relation
rq defines a matrix

If IG is ideal of A~r generated by

then we define Rn(G) = Spec( A6"° /IG ) .

Up to isomorphism this definition is independent of the choice of presentation
for G.

Note that the complex points of this scheme correspond to representations of G
in Cn, since they are exactly those points (Xl, ..., X r ) in GLn(Cn)r which satisfy
the equality

Given such a point, we can define a representation p of G by
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and conversely, given a representation p : G - GLn(C), we can define a point
(X1,..., Xr) in Rn(G)(C) by

It is clear that this gives a bijective correspondence. The complex points of Rn(G)
do not, however, completely describe it, since in general it is not reduced.

The construction in Definition 2.1 is functorial. If H is another finitely generated
group and f : G ~ H is a group homomorphism, then there is a natural morphism
of schemes over C:

On the level of complex points, f * takes a representation p of H in en to the
representation p o f of G in CI. It is not hard to write down an explicit formula for
the map on coordinate rings associated to f*.

While the complex points of Rn (G) parameterize all representations of G in CP ,
we are interested only in isomorphism classes of n-dimensional representations of
G. If (Xl, ... , XT) is in Rn (G) (C), then the set of points of Rn(G)(C) which
correspond to isomorphic representations is exactly

So isomorphism classes of n-dimensional complex representations of G are param-
eterized by points in the topological space GLn((C)BRn(G)(C), where GLn(C) acts
as above the conjugation. This action in fact comes from an action of the reductive
algebraic group GLn on the affine scheme Rn(G). According to Theorem 1.1 on
page 27 in [12] we can form an affine scheme of finite type over C which is a
universal categorical quotient (Definition .7 on page 4 of [12]) of Rn(G) by the
action of GLn. We denote this scheme by SSn(G). It is not in general a geometric
quotient; that is to say that if xG : Rn(G) - SSn(G) is the quotient morphism,
then in general some of the fibers of the induced map on complex points contain
more than one GLn(C)-orbit. We have, however, the following result, which is
Proposition 1.12 in [10].

PROPOSITION 2.1. Let Rsn(G) denote the open subscheme of Rn(G) the complex
points ofwhich correspond to irreducible representations ofG in en and let Sn (G)
be its categorical quotient by the action of GLn. (See pp. 11-14 in [10] for precise
definitions of these schemes.) Then Sn(G) is an open subscheme of SSn(G), and
7rG is a geometric quotient when restricted to Rsn(G)(C).

This proposition says that complex points of Sn(G) correspond exactly to iso-
morphism classes of irreducible n-dimensional complex representations of G.

As for the complex points of SSn(G), we have the following, which is Theorem
1.28 in [10].
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THEOREM 2.2. Every fiber of the map

contains a unique GLn (C) orbit O(03C1) of a point corresponding to a semi-simple
representation p of G in CP, and this orbit is closed. Furthermore, if 03C3 is a

representation of G on en corresponding to a complex point in this fiber, then the
closure of the orbit O(03C3) meets O(03C1), and p is isomorphic to a semi-simplification
of (J. (For any G-representation 03C4 : G ~ GL(V), where V is a finite dimensional
complex vector space, if

is a filtration of V by G-invariant subspaces Vi such that Vi-1/Vi is irreducible
for 1  i  m, then the "semi-simplification " of 03C4 is

This is well-defined up to isomorphism.)

The complex points of SSn(G) thus correspond to isomorphism classes of
semisimple representations of G.

If f : G - H is a homomorphism of finitely generated groups, then f* :
Rn(H) ~ Rn(G) is GLn-equavariant, so that f * induces a morphism of universal
categorical quotients from 03C0H : Rn(H) ---+ SSn(H) to 03C0G: Rn(G) ~ SSn(G).
In particular there is a morphism f* : SSn(H) ~ SSn(G), which sends a point
on SSn(H) corresponding to a semi-simple representation o,: H - GLn(C) to
the point on S Sn( G) corresponding to a semi-simplification of (J o f.

The final basic results about these schemes which are important to us are
those proved by Weil in [19], which describe tangent spaces. Recall that for a
not necessarily reduced scheme X over C, the tangent space Tx(X) to X at a
complex point x of X is the space of morphisms of Spec(C[T]/(T2)) into X over
the point x. If U = Spec(A) is an affine open neighborhood of x in X, then x
corresponds to a C-linear homomorphism ix : A ~ C, and Tc(X) is the space of
all C-linear homomorphisms j : A ~ C[T]/(T2) such that the following diagram
commutes:
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Here p: C[T]/(T2) ~ C is the C-algebra homomorphism which sends T to 0. If
X is reduced and of finite type over C, then this is the usual tangent space, and in

general Tx(X) contains Tz(Xred). A morphism of schemes 0: X ~ Y induces in
the obvious way a morphism Do,,: Tx(X) ~ T~(x)(Y) for any complex point x
in X.

For schemes of representations, we have the following two results due to Weil,
which are Propositions 2.2 and 2.3 in [10]. In stating these results, we identify a
representation p: G ~ GLn(C) with a complex point on Rn(G).

PROPOSITION 2.3. Let p be in Rn(G)(C). Then there is a natural isomorphism

where Ad o p is the representation of G on Mn(C) given by:

for any g in G and any M in Mn(C), and Z1(G, Ad o p) is the group of 1-cocyles
for this representation.

PROPOSITION 2.4. Let p be in Rn(G)(C) and let Op : GLn ~ Rn(G) be the
morphism of schemes defined by the action ofGLn on the orbit of p. (For any A in
GLn(C), ’t/J p ( A ): G - GLn(C) is given by:

03C803C1(A)(g) = A03C1(g)A-1

for any g in G.) Then the image of the composite

where the isomorphism is that in Proposition 2.3, is B1(G, Ad o p), the space of
1-coboundaries for the representation Ad o p.

COROLLARY 2.5. If for every semi-simple complex representation p of G of
dimension n, H1(G, Ad o p) = 0, then there are only finitely many isomorphism
classes of n-dimensional complex representations of G, and all of them are semi-
simple.

Proof. By the previous two propositions, all the orbits of GLn (C) on Rn (G)(C)
corresponding to semi-simple representations are open, while by Theorem 2.2 these
orbits are closed, and the closure of any orbit of GLn(C) meets one of these orbits.
Therefore Rn(G)(C) is a disjoint union of a finite number of orbits of GLn((C)
corresponding to semi-simple representations of G. 0

These results combine to give us the result which we apply in the proof of
Theorem 6.1. Before stating the result, we introduce some notation.
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Let f : G ~ H be a homomorphism of finitely generated groups, and let
p : G ~ GLn(C) be a semi-simple representation. We denote by p the correspond-
ing complex point of SSn(G)(C). The fiber of 1*: SSn(H) ~ SSn(G) over p
is a subscheme the complex points of which correspond to isomorphism classes of
semi-simple representations o,: H ~ GLn(C) such that all semi-simplifications
of Q o f are isomorphic to p. (see Lemma 1.26 in [10].) For the proof of Theorem
6.1, however, we are interested in isomorphism classes of representatioms u such
that (7 o f is itself isomorphic to p. These correspond to complex points in a closed
subscheme Wp of f*-1(03C1), which we describe as follows. If O(p) denotes the
orbit of p in Rn(G) under GLn, then by Theorem 2.2 0(p) is a closed subscheme
of Rn(G), and so 1*-I(O(p)) is a closed GLn-invariant subscheme of Rn(H).
Therefore there is a closed subscheme of SSn(H) which is the categorical quo-
tient of f*-1(O(p)) by GLn. (This follows from arguments used in the proof of
Theorem 1.1 on pages 25-27 of [12].) The complex points of this scheme are those
corresponding to semi-simplifications (J ss of representations 03C3 : H ~ GLn(C)
such that o, o f is isomorphic to p. Then (1 ss o p is also isomorphic to p, so that this
scheme is the Wp we want.

Note that by construction and Theorem 2.2, the map on complex points induced
by the morphism

has connected fibers. For if 03C4 : H ~ GLn(C) is semi-simple and T is in Wp,
then O(03C4) is connected and contained in (03C0H|f*-1(O(03C1)))-1(03C4), and if r’ is also in
(03C0H|f*-1(O(03C1)))-1(03C4), then the closure of 0(T’), which is also connected, meets
0(,F).

PROPOSITION 2.6. In the situation described immediately above, if every con-
nected component of the topological space associated to the complex points of Wp
contains a point corresponding to a semi-simple representation 0’: H ~ GLn (C)
such that f induces an injection

then Wp has only finitely many complex points.
Proof. Suppose the theorem is false. Then there is a complex point 03C3 in Wp

corresponding to a semi-simple representation o,: H ~ GLn (C) with

such that 0-1 is contained in an irreducible component V of WP of positive dimension.
Let
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The Hausdorff space formed by the complex points of U is connected, since the
fibers of 03C0H|f*-1(O(03C1)) are connected. Because V is of positive dimension, and
03C0H(O(03C3)) is the point 0-, we have T, (0 (o,» C: Tu(U). However f*(U) g O(p),
so that

Then the kemel of the composite:

contains the non-zero subgroup T03C3(U) T03C3(O(03C3)). But by the naturality of the morphisms
in Propositions 2.3 and 2.4, this composite is the natural map:

which is injective by assumption. This completes the proof of the proposition. ~

3. Local systems underlying variations of Hodge structure

For any analytic space X over the complex numbers, and any positive integer n, if
{Xi}1ir is the set of connected components of X, we denote by MB,n(X) the
Hausdorff topological space consisting of the complex points of the scheme

for some choice of base points xi for each of the Xi. MB,n(X) is then well-defined
up to homeomorphism, and by the correspondence between representations of fun-
damental groups and local systems, along with Theorem 2.2, the points of MB,n(X)
correspond naturally to isomorphism classes of semi-simple n-dimensional com-
plex local systems on X. In the proof of Theorem 6.1, we apply Proposition 2.6 to
schemes SSn(03C01(X, x0)) for smooth projective algebraic varieties X, viewed as
analytic spaces. To verify the hypotheses of Proposition 2.6, we use certain results
from the work of C. Simpson in [15] and [16] about the spaces MB,n(X) when X
is a smooth projective algebraic variety. This section is devoted to a discussion of
these results.

First we give some definitions from [5] and [15].

DEFINITION 3.1. A complex variation of Hodge structure on a complex manifold
M is a C°° complex vector bundle V on M with the following data.

( 1 ) A Coo decomposition
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(2) A flat connection DY satisfying

(3) A Hermitian form QY on V which is flat with respect to D, positive definite
on V’,’ is r is even, negative definite on Y’’,S if r is odd, and such that
QV(Vr1,s1, yr2,S2) = 0 unless ri = r2 and si = 82.

Here Ap,q(Vr,s) denotes the bundle of Coo 1-forms on M with coefficients in
Vr,s. Note that the (0,1)-component of the connection Dv defines a holomorphic
structure on V such that for any integer the subbundle

is holomorphic.
DEFINITION 3.2. Let V be a complex variation of Hodge structure on a complex
manifold M, and suppose we are given a real structure on the underlying CI
vector bundle. We define the conjugate variation of Hodge structure V to V to
be the complex variation of Hodge structure with the same underlying CI vector
bundle given by the following data.

( 1 ) For any pair of integers ( r, s ) , Vu = Vs,r.

(2) The connection Dv on V is the complex conjugate of the connection Dv
on V; that is to say that for any CI section f of V, Dç( f) is the complex
conjugate of DV(f).

(3) For any two CI sections f and g of Vr,S = Vs,r, the Hermitian form Qy on
V is such that Q V (f, g) is the complex conjugate of (-1)r+sQ(f, g).

DEFINITION 3.3. We say that a complex variation of Hodge structure on a com-
plex manifold .M is a real variation of Hodge structure if the underlying CI vector
bundle is given a real structure so that V = V.

If V is a real variation of Hodge structure, then there is a local system of
R-vector spaces VR such that VR 0 C is the flat bundle defined by Dv, and the
complex conjugate of V’,’ with respect to this structure is V’,’ for any pair of
integers (r, s ) . Furthermore, there is a flat bilinear form S on V, defined over VR,
such that S restricted to ~r+s=m Vr,s is symmetric if m is even and skew is m is
odd, S(Vr1,s1, vr2,S2) = Ounless ri = s2 and s 1 = r2, and i-r-sS(f,g) = Q(f,g)
for any pair ( f , g ) of CI sections of Vr,s.

Let V and W be any two complex variations of Hodge structure on a complex
manifold M.

DEFINITION 3.4. The complex variation of Hodge structure Hom(V, W ) is the
variation of Hodge structure with underlying CI vector bundle Hom(V, W ) given
by the following data.



150

(1) Hom(V, w)r,s = {03BB E CI (M, Hom(V, W)) 1 A(Vp,q) g Wp+r,q+-9 for all
pairs of integers p and q}.

(2) DHom(V,W)(03BB) = DW À - ADv.
(3) OHom(V,W) is on each fiber the natural Hermitian form induced by Qv and

Qw.
With Definition 3.4 we can define the dual variation of Hodge structure V* =

Hom(V, C), where C denotes the trivial variation of Hodge structure on M with
C0,0 = (C, and thus we can also define the tensor product V (D W of V and W.
Since the complex conjugate of Hom(V, W ) is Hom(V, W ), all these constructions
apply to real variations of Hodge structure as well.

DEFINITION 3.5. The direct sum V e W of the complex variations of Hodge
structure V and W is the complex variation of Hodge structure with underlying
CI vector bundle structure V (B W given by the following data.

Note that for any complex variation of Hodge structure V on a complex manifold
M, and any choice of real structure on the ClO vector bundle underlying V, V ~ V
is a real variation of Hodge structure.

For the remainder of this section we denote by X any smooth projective alge-
braic variety over the complex numbers, which we consider as a complex manifold.

Now we can state what for our purposes are the main results in [ 15] and [16].

THEOREM 3.1. There is a continuous action of C’ on MB,n(X) the fixed points
of which are those points on M B,n (X) corresponding to semi-simple complex local
systems on X which underlie variations of Hodge structure.

THEOREM 3.2. For any point p in MB,n(X) corresponding to a semi-simple
complex local system on X,

exists.

The limit point which exists by Theorem 3.2 is C« -invariant, so by Theorem
3.1 the corresponding semi-simple local system underlies a variation of Hodge
structure.

The complete proofs of Theorems 3.1 and 3.2 are well beyond the scope of
this paper. For our applications, though, we need to know more precisely how the
C*-action is defined. For this we need first more definitions given in [15].




