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0. Introduction

In the short paper [1] A. Beilinson introduced a generalized version of adeles,
with values in any quasi-coherent sheaf on a noetherian scheme X. In particular,
taking the structure sheaf OX one gets the cosimplicial ring of adeles A. (X, OX).
In each degree n, An (X, OX) is a subring (a "restricted product") of the product
of local factors Ilç OX,03B6. Here g = (xo, ... , xn ) runs over all chains of length n
of points in X. The Beilinson completion Ox,e is gotten by a process of inverse
and direct limits. For n = 0, OX,(x0) is simply the m-adic completion of the local
ring at xo. For applications to duality theory one is primarily interested in the
completion OX,03B6 along a saturated chain ç. As shown in [24], the semi-local ring
OX,03B6 carries a natural topology, and its residue fields carry rank n valuations.

In the present paper we isolate the completion 0 X,ç from its geometric envi-
ronment, and study it as a separate algebraic-topological object, which we call a
Beilinson completion algebra (BCA). The methods used here belong to commu-
tative algebra, analysis and differential geometry. Our main results have to do
with dual modules of BCAS, their functorial behavior and their interaction with
differential operators. These results, in tum, have some noteworthy applications
to algebraic geometry (see Subsection 0.3).

One may view our paper partly as a continuation of the work of Lipman, Kunz
and others on explicit formulations of duality theory (cf. [17, 18, 15, 11, 12, 7, 8,
10, 19, 6]). Their work deals with linear aspects of duality theory - construction
of dualizing modules, trace maps, etc. To that we have little new to add in the
present paper. The novelty of our work is in establishing the nonlinear properties
of duality theory. We show how duality interacts with differential phenomena,
such as D-modules and De Rham complexes. Such results seem to have been
beyond the reach of the methods of commutative algebra used henceforth in this
area.
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In the remainder of the introduction we outline the content of the paper.

0.1. BEILINSON COMPLETION ALGEBRAS

Let k be a fixed perfect base field. A local BCA A is a quotient of a ring
F((s))[[t]] = F((s1, ... , sm))[[t1, ... , tn]], where F is a finitely generated field
extension of k, and F((s1,..., sm)) = F((sm))··· ((si)) is an iterated field of
Laurent series. A is a complete noetherian local ring, and a semi-topological
(ST) k-algebra. On the residue field A/m there is a structure of m-dimensional
topological local field (TLF). (These terms are explained briefly in Sections 1

and 2.) The surjection F((s))[[t]] - A is not part of the structure of A. A general
BCA is a finite product of local ones.
We are interested in two kinds of homomorphisms between BCAs. The first is

called a morphism of BCAs, and the second is called an intensification homomor-
phism. Rather than defining these notions here (this is done in Sections 2 and 3),
we demonstrate them by examples. Let A := k(s)[[t]] and B := k(s)((t)). These
local BCAs arise geometrically: take X := A2k = Speck[s, t] and x = (0), y =
(t), z = (s, t) e X. Then A ~ OX,(y) and B -É OX,(x,y), the Beilinson comple-
tions of Ox along the chains (y), (x, y) respectively. The inclusion A ~ B is a
morphism, which in "cosimplicial" notation is ~+: OX,(y) ~ OX,(x,y). Now let
A := k((s))[[t]] ~ OX,(y,z). Then A ~ A is an intensification homomorphism,
which we also write as «0-: OX,(y) - Ox,(y,z).

Whenever A - B is a morphism and A ---t A is an intensification, there is a
BCA Ê = B ~(039B)A Â, a morphism Â -  and an intensification B - . This
situation is called intensification base change. In our example,  = k((s))((t)) ~
OX,(x,y,z).

BCAs and morphisms of BCAs constitute a category which is denoted by
BCA(k).

0.2. THE RESULTS

There are three main results in the paper. Their precise statement is in the body
of the paper, and what follows is only a sketch.
A finite type ST module M over a BCA A is a quotient of An for some n,

with the quotient topology (so if A/m is discrete, M has the m-adic topology.)
The fine topology on an A-module M is characterized by the property that each
finitely generated submodule M’ C M, with the subspace topology, is of finite
type. (More on ST modules in Section 1.) Given a TLF K (i.e. a BCA which is
a field), we denote by w(K) the top degree component of the separated algebra
of differentials 03A9·,sepK/k.
THEOREM 6.14 (Dual modules). Let A be a local BCA and M a finite type
ST A-module. Then there is a dual module DuaIAM, enjoying the following
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properties. To any morphism o,: K ~ A in BCA(k) with K a field, there is a
bijection

If a = T o f for some morphisms f : K - L and T: L - A, then

where ReSL/K: 03C9(L) ~ w(K) is the residue on TLFS, see [24], §2.4. If a, 0":
K ~ A are two pseudo coefficients fields (i.e. morphisms such that [A/m: K] 
oo) which are congruent modulo m, then the isomorphism

has an explicit formula in terms of "Taylor expansions" and differential opera-
tors.

In particular for M = A we set K(A) := DuaIAA, with the fine topology.
K(A) is an injective hull of the residue field A/m. Note that for a field K,
K(K) = 03C9(K). If M is any ST A-module we define

with the Hom topology. (When M is of finite type this is consistent with The-
orem 6.14.) We show that given an intensification homomorphism v : A ~ Â
there is a continuous homomorphism of ST A-modules

THEOREM 7.4 (Traces). Let A ~ B be a morphism in BCA(k). Then there
exists a continuous A-linear trace map TrB/A: K(B) ~ K(A). This trace is
functorial: TrC/A = TrB/A o Trc/B. It induces a bijection

The trace commutes with intensification base change: given an intensification
A - A, and letting B := B Q9 A A, we have

If u: K ~ A is a morphism with K a field, then
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THEOREM 8.6 (Duals of continuous differential operators). Suppose M, N are
ST A-modules with the fine topologies and D: M ~ N is a continuous DO.
Then there is a continuous DO

This operation is transitive in D and compatible with intensification base change
A - A. DualA (D) is unique, has an explicit description using the isomorphisms
03A8M03C3, 03A8N03C3, and is the adjoint of D w. r. t. suitably defined residue pairings.

0.3. APPLICATIONS

The primary. application of our results, and the original motivation of the paper,
is the explicit construction of residue complexes on k-schemes. This is carried
out in [25]. The construction is extremely simple, and we shall sketch it here.
Suppose X is a k-scheme of finite type and (x, y) is a saturated chain of points
in it (i.e. y is an immediate specialization of x). There are natural homomor-
phisms 0-: OX,(x) - OX,(x,y) and 0+: OX,(y) ~ OX,(x,y), the first being an
intensification and the second a morphism (cf. example in Subsection 0.1 above).
According to Theorems 6.14 and 7.4 we get an OX-linear homomorphism

Considering K(OX,(x)) as a skyscraper sheaf sitting on {x}-, we define

Then (ICi, 8x) is the residue complex on X (cf. [21, 5, 24, 22]).
A special feature of this particular construction of KX is that given a DO

D : M ~ N between OX-modules, there is a dual DO

which is a homomorphism of complexes. This implies that KX is a complex
of right Dx-modules. Conversely, Vx can be recovered from DOs acting on
KX. Another consequence of Subsection 0.1 is that FX := HomOX(03A9X/k, KX)
has a natural structure of double complex. Using 0§ we are able to analyze
the niveau spectral sequence converging to HDR(X), the algebraic De Rham
homology of X.
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0.4. PLAN OF THE PAPER

Section 1 : a quick review of semi-topological rings and modules, as well
as new facts on ST Hom modules.

Section 2: definition of BCAs and morphisms, including examples.
Section 3: definition of intensification homomorphisms, base change.
Section 4: general facts on continuous differential operators over ST alge-

bras ; the Lie derivative.

Section 5: the structure of the ring of continuous DOs D(K) over a TLF K;
03C9(K) is a right D(K)-module, and the action is by adjunction
in a suitable sense.

Section 6: existence of dual modules is proved.
Section 7: contravariance of dual modules w.r.t. morphisms is proved

(traces).
Section 8: the interaction between dual modules and DOs is examined,

leading to Theorem 8.6 and a few corollaries.

1. Some results on semi-topological rings

Let us recall some definitions and results from [24], §1. A semi-topological
(ST) ring is a ring A, with a linear topology on its underlying additive group,
such that for all a E A, left and right multiplication by a are continuous maps
03BBa, 03C1a: A ~ A. A ST left A-module is an A-module M, whose underlying
additive group is linearly topologized, and such that for all a E A and x E M, the
multiplication maps they define 03BBa: M ~ M and 03C1x: A - M are continuous.
ST left A-modules and continuous A-linear homomorphisms form a category,
denoted STMod(A). Similarly one defines ST right modules and bimodules.

Assume for simplicity that the ST ring A is commutative. In STMod(A) there
are direct and inverse limits, and a tensor product. Given a ST A-module M,
the associated separated module Msep = M/fOl- is also a ST A-module. The
category STMod(A) is additive, but not abelian. An exact sequence in it is, by
definition, a sequence M’  M  M" which is exact in the untopologized
sense (i.e. in Mod(A)), and such that both 0 and e are strict.

On any A-module M there is a finest topology making it into a ST module;
it is called the fine A-module topology. If M has the fine topology, then for
any ST A-module N, one has HomADt(M, N) = HomA(M, N), and this in fact
characterizes the fine topology. Trivially, if M has the fine topology, then so does
Msep. A free ST A-module is a free A-module with the fine topology. So F is
free iff F ~ ~ A with the (j) topology. A ST module M has the fine topology
iff it admits a strict surjection F  M with F free.
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DEFINITION 1.1. Let M, N be ST A-modules. The (weak) Hom topology on
the abelian group HomcontA (M, N) is the coarsest linear topology such that for
every x E M, the map px: HomcontA(M, N) ~ N, 0 H 0(x), is continuous.

Unless otherwise specified, this is the topology we consider on HomA’nt(M, N).
If M has the fine topology, we shall often drop the superscript "cont".

Remark 1.2. A basis of neighborhoods of 0 for the Hom topology is the
collection of open subgroups {V(F, U)}, where F runs over the finite subsets
of M, U runs over the open subgroups of N, and v(F, U) = {~ 1 ~(F) c Ul.
Such a topology is sometimes called the weak topology (cf. [14]). Usually, to
obtain a duality one needs a finer topology - the strong topology of [14], or the
compact-open topology of [20]. In the present paper duality is defined by indirect
means, and for our purposes the weak topology suffices (cf. Remark 8.3).

The next lemma summarizes the properties of the Hom topology. Its easy proof
is left to the reader.

LEMMA 1.3. Let A be a commutative ST ring.
(1) Let 0: M’ ~ M and 1/;: N ~ N’ be homomorphisms in STMod(A).

Then the induced homomorphism HomA’nt (M, N) ~ HomAnt (M’, N’) is

continuous.

(2) Let M, N be ST A-modules. Then HomA’nt(M, N) is a ST A-module. EndA’nt
(M) = Homc"t (M, M) is a ST A-algebra, and M is a ST left End cont (M)
module. The natural bijection M --=-+ HomAnt(A, M), x H px, is an iso-

morphism of ST A-modules.
(3) Suppose in (1) ~ is surjective and 1/; is a strict monomorphism. Then

HomcontA(M, N) - HomcontA(M’, N’ ) is a strict monomorphism.
(4) Let (M03B1)03B1~I be a direct system in STMod(A), with I a directed set. Then

for any ST A-module N the natural map
lim HomcontA (Ma, N) - Homcont (lim Ma, N)
~03B1

is an isomorphism of ST A-modules.

From parts (1) and (2) of the lemma1L-follows that HomAnt is an additive
bifunctor STMod(A)’ x STMOd(A) ~ STMod(A).

Tensor products are defined in ST M od (A). The usual tensor product M 0 A N
is given the finest linear topology s.t. the maps py: M ~ M 0A N, x’ H
x’ 0 y and Àx: N - M 0A N, y’ H x ~ y’ are all continuous (see [24],
Definition 1.2.11).

LEMMA 1.4 (Adjunction). Let A, B be ST rings (not necessarily commutative),
let L be a ST left A-module, N a ST left B-module, and M a ST B-A-bimodule.
Then

as topological abelian groups.



65

Proof Immediate from the definitions of the Hom and 0 topologies. CI

We say a homomorphism 0: M ~ N of topological abelian groups is dense if
~(M) c N is (everywhere) dense.

LEMMA 1.5. Suppose A is a ST ring and M - M, N ~ N are continuous
dense homomorphisms of ST A-modules. Then M 0A N ~ M 0A N is dense.

Proof By transitivity of denseness it suffices to prove that M 0A N ~
~A N is dense. Choose a surjection from a free module A(I) = ~ A onto N.
This induces surjections M(I) ~ M 0 A N and (I) ~ Ñf 0 AN. But according
to [24], Proposition 1.1.8(c), M(I) ~ (I) is dense. D

DEFINITION 1.6. Let A be a commutative noetherian ST ring. A ST A-module
M is called of finite type (resp. cofinite type, resp. torsion type) if it is finitely
generated (resp. it is artinian, resp. SuppM C SpecA consists solely of maximal
ideals), and if it has the fine topology.

Denote the full subcategories of STMod(A) consisting of finite type (resp. cofi-
nite type) modules by STModf(A) (resp. STModcof(A)).

Generalizing the Zariski and Artin-Rees properties for noetherian rings with
adic topologies, we make the following definition. Let us point out that this
definition is stronger than [24] Definition 3.2.10.

DEFINITION 1.7. Let A be a noetherian commutative ST ring. A is said to be
a Zariski ST ring if
(i) Every ST A-module, which is either of finite type or of torsion type, is

separated.
(ii) Every (continuous) A-linear homomorphism between two ST A-modules,

each either of finite type or of torsion type, is strict.

PROPOSITION 1.8. Let A be a local Zariski ST’ring, with maximal ideal m.
Assume that A ~ lim~i A/mi+1 as ST rings. Let M, N be ST A-modules.
(1) If M, N are both of finite type then so is HomcontA(M, N).
(2) If M is of finite type and N is of cofinite type then Homc"t (M, N) is of

cofinite type.
(3) If M, N are both of cofinite type then HomAot(M, N) is of finite type.

Proof. (1) Let Ar ~ M be a surjection. By Lemma 1.3 (2) and (3), Hom
(M, N) y Nr is a strict monomorphism. Now use the Zariski property to
conclude that HomA (M, N) has the fine topology.
(2) Like (1).
(3) Let Mi : - HomcontA(A/mi+1, M), so Mi y M is strict, Mi has the fine

topology, and M = limi~ Mi. Similarly define Ni. By part (4) of Lemma 1.3,
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Now Mi and Ni are of finite type, so we can we can use part (1) and [24],
Proposition 1.2.20. D

COROLLARY 1.9 (ST version of Matlis duality). Let A be as in the proposi-
tion. Suppose l is an injective hull of A/m, endowed with the fine topology.
Then HomcontA(-, I) is an equivalence

2. Definitions and basic properties of BCAs

In this section k is a fixed perfect field. If A is a ST k-algebra and t = (tl, ... , tn)
is a sequence of indeterminates, we denote by A[[t]] = A[[t1, ..., tn]] the ring of
formal power series, with the topology given by

where for each i, A[t]/(t)i has the fine A-module topology. The ring of Laurent
series A((t)) is topologized by

and we define recursively

According to [24] §1.3, A[[É]] and A((t)) are ST k-algebras.
A topological local field (TLF) over k is a field K, together with a topology,

and valuation rings Oi, i = 1,..., n, such that the residue field Ki of Oi is the
fraction field of Oi+1, and K = Frac(O1). These data are related by the existence
of a parametrization: an isomorphism K ~ F((t1, ... , tn)) of ST k-algebras, s.t.
o ~ F((ti+1,..., tn))[[ti]]. Here F is a discrete field, and 01 Flk has finite rank.
The number n is the dimension of the local field K. Topological local fields
constitute a category TLF(k). For more details see [24] §2.1.

DEFINITION 2.1. A local Beilinson completion algebra (BCA) over k is a com-
mutative semi-topological local ring A, together with a structure of topological
local field on the residue field A/m. The following condition must be satisfied:
there exists a surjective homomorphism of k-algebras

which is strict (topologically), and induces and isomorphism of TLFs F((s)) ~
A/m. Such a surjection is called a parametrization of A.
A Beilinson completion algebra is a finite product of local BCAs.
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Remark 2.2. In greater generality one can define a BCA over any noetherian
ring R, to be any finite algebra over the R-algebra A(039E,OX) = 03A003B6~039E OX,03B6,
where E is a finite set of saturated chains in some finite type R-scheme X, and

A(2013, 2013) is Beilinson’s scheme theoretical group of adeles. See [1, 9, 24, 13] for
the definition of adeles, and cf. Examples 2.3 and 2.4 below.

Observe that a Beilinson completion algebra A is necessarily an r-adically com-
plete, noetherian, semi-local ring, where r is the Jacobson radical of A. If A is
artinian, then in the terminology of [24], it is a cluster of TLFs (a CTLF).

For any m E MaxA set res.dimmA := dimA/m, the local field dimension. We
say that A is equidimensional of dimension n if res.dimmA = n for all m. In
this case we set res.dimA := n, and

for 1 x i  n. Also we set O0(A) := A and ro(A) := A/r = 03A0 A/m.
The motivating example is:

EXAMPLE 2.3. Let X be a scheme of finite type over k, and let = (x0,..., xm)
be a saturated chain in X. Then the Beilinson completion OX,03B6 of the struc-
ture sheaf along 03B6 is defined; see [24] §3.1. We claim that Ox,e is an equidi-
mensional BCA, of dimension m. To see why, first choose a coefficient field

a: k(x0) ~ OX,x0 = OX,(x0). According to [24] Lemma 3.3.9, cr extends to
a lifting a ç: k(03B6) = k (xo) ç - OX,03B6. Sending t 1,..., tn to generators of the
maximal ideal mxo’ we get a strict surjection k(03B6)[[t1,...,tn]] ~ OX,03B6. Final-
ly, according to [24], Proposition 3.3.6, k(03B6) is a finite product of TLFs, all of
dimension m.

EXAMPLE 2.4. Consider a BCA A = F((sl, ... , sm))[[t1,..., tn]]. We claim it
is of the form OX,ç. Choose an integral k-scheme of finite type Y such that F =
k(Y). Set X := An+mY = An+m kY, and let 03B6 = (xo, ..., xm) be the saturated
chain xi := (t 1, ... , tn, Si ... , si), where we write An+mk = Speck[s, t]. Then
F((s))[[t]] ~ Ox,g (cf. [24] Theorem 3.3.2(c); it can be assumed that Y is

normal).

Let A be a local BCA of res.dim n. For every 1  i x n there is a subring
01, .... i (A) c A defined by

It is the largest subring of A which projects onto "’i (A), and it is actually the
valuation ring of a rank i valuation (hence local). In [24] the notation O(A) was
used for 01 ,...,n (A).
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DEFINITION 2.5 (Morphisms). Let A and B be Beilinson completion algebras.
A morphism f : A - B is a continuous k-algebra homomorphism, satisfying
the following local condition. Given a maximal ideal n c B, let m c A be the
unique maximal ideal such that f-1(n) c m. Set i := res.dimBn - res.dimAm,
which is assumed to be non-negative. Then f (Am) C 01,...,i(Bn), the induced
homomorphism Am ~ 03BAi(B/n) sends m to 0, and A/m - 03BAi(B/n) is a finite

morphism of local fields.

The composition of two morphisms is again a morphism, so we get a category,
which is denoted by BCA(k). The number i in the definition is called the relative
residual dimension of f at n, denoted res.dimnf. If f is equidimensional we shall
ommit the subscript n. We call f finite if B is a finitely generated A-module.
Observe that the full subcategory of BCA(k) consisting of fields coincides with
the full subcategory of TLF(k) consisting of TLFs whose last residue field is

finitely generated over k. (In characteristic 0 this is all of TLF(k).)
Here are some typical examples of morphisms of BCAs.

EXAMPLE 2.6. Let A := k[[s]], B := k((s))[[t]], and let f: A - B be
the inclusion. Then m = (s), n = (t), res.dimmA = 0, res.dim"B = 1 and

res.dimnf = 1.

EXAMPLE 2.7. Let X be a finite type k-scheme, 03B6 = (x, ... , y) a saturated
chain in X, A := OX,(y), B := OX,03B6, and ~+: OX,(y) - OX,03B6 the coface map.
Now res.dimA = 0, and res.dimB = res.dim8+ equals the length of 03B6.

EXAMPLE 2.8. Let X, Y be finite type k-schemes, f : X ~ Y a k-morphism,
y E Y any point and x a closed point in the fibre Xy := f-1(y). Since k(y) ~
k(x) is finite, f *: Oy,(y) ~ OX,(x) is a morphism of BCAS, with res.dimf * = 0.

DEFINITION 2.9. Let A be a local BCA over k, with maximal ideal m. A
coefficient fzeld (resp. quasi coefficient field, resp. pseudo coefficient field) for A
is a morphism 03C3: K - A in BCA(k), with K a field, and such that the induced
homomorphism K - A/m is bijective (resp. finite separable, resp. finite).

By definition, every local BCA has a coefficient field.

LEMMA 2.10. Let A be a local BCA over k, with maximal ideal m. Then:
(a) Suppose A is artinian and K ~ A is a pseudo coefficient field. Then A has

the fine K-module topology.
(b) Letting Ai := A/m’+’, the map A - limf-i Ai is an isomorphism of ST

k-algebras.

(c) Let K - A be a pseudo coefficient field, and let M be a torsion type ST
A-module (see Definition 1.6). Then M is a free ST K-module.
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(d) Suppose a : K ~ A is a morphism of BCAs, with K a field. Then there exists

a finite morphism f: L[[t]] - A extending a, i.e. a: K - L - L[[t]]  A.
Proof. (a) By [24] Proposition 2.2.2.

(b) This is true for F«I»[[É]] (by definition!) and hence, by [24] Proposi-
tion 1.2.20, for every quotient A.
(c) Set Mi := HomA(Ai, M), with the fine A-module topology. According to
[24] Corollary 1.2.6, M EÉ limi, Mi. Now Mi is a ST Ai-module with the fine
topology. Since Ai has the fine K-module topology, so does Mi. Passing to the
limit, M has the fine K-module topology, so it is a free ST K-module.
(d) According to [24] Corollary 2.1.19 we can find a finite morphism K((s)) =
L ~ A/m. As in the proof of ibid. Proposition 2.2.2, this extends to a morphism
L ~ lim_j Ai = A, which we then extend to f: L[[t]] ~ A by sending the ti
to generators of the maximal ideal ideal m. D

PROPOSITION 2.11. Let A be a BCA over k. Then:

(a) If f : A ~ B is a finite morphism in BCA(k), then B has the fine A-module
topology.

(b) Conversely, if B is a finite A-algebra, then B admits a unique structure of
BCA s.t. A - B is a morphism of BCAs.

(c) A is a Zariski ST ring. Moreover, every finite type or torsion type ST A-
module is complete.
Proof. (a) Let r C A and s c B be the Jacobson radicals. According to [24],

Proposition 2.2.2(b), Bi := B/si+1 has the fine Ai := A/ri+1 -module topology,
for each i  0. So Bi also has the fine A-module topology. Now use Lemma 2.10
(b) and [24] Proposition 1.2.20.
(b) According to [24] Proposition 2.2.2(c), this is true for Ai ~ Bi. Now use
B ~ lim+-i Bi.
(c) It suffices to consider A = F((s))[[t]]. By [24] Theorem 3.3.8, A is a Zariski
ST ring in the sense of ibid. Definition 3.2.10. This means that every finite type
ST A-module is separated, and every homomorphism between two such modules
is strict.
Now consider two torsion type ST A-modules, M and N. We may assume

A is local. Choose a pseudo coefficient field K - A. Then M, N are free ST
K-modules, and in particular they are separated and complete (cf. [24] Proposi-
tion 1.5). To prove that any homomorphism 0: M ~ N is strict, we may assume
it is injective. Then any K-linear splitting M ~ N is continuous, showing that
is strict.

Finally, given a homomorphism 0: M ~ N, with M, N either of finite
type or of torsion type, then the module M := ~(M), endowed with the fine
topology, is a ST module of both types. Therefore M ~ M and M y N are
both strict. ~


