@article{CM_1995__99_2_109_0, author = {K\"unnemann, Klaus}, title = {Some remarks on the arithmetic {Hodge} index conjecture}, journal = {Compositio Mathematica}, pages = {109--128}, publisher = {Kluwer Academic Publishers}, volume = {99}, number = {2}, year = {1995}, mrnumber = {1351832}, zbl = {0845.14006}, language = {en}, url = {http://archive.numdam.org/item/CM_1995__99_2_109_0/} }
Künnemann, Klaus. Some remarks on the arithmetic Hodge index conjecture. Compositio Mathematica, Tome 99 (1995) no. 2, pp. 109-128. http://archive.numdam.org/item/CM_1995__99_2_109_0/
1 A Fourier transform construction for Arakelov Chow groups of arithmetic abelian schemes. Duke Math. J., Int. Math. Res. Notices, No. 7, (1993), 227-232. | MR | Zbl
:2 Higher regulators and values of L-functions. J. Soviet Math. 30 (1985), 2036-2070. | Zbl
:3 Heights of projective varieties and positive Green currents. Journal of the AMS 7 (1994), 903-1027. | MR | Zbl
, , :4 Motivic decomposition of abelian schemes and the Fourier transform. J. reine angew. Math. 422 (1991), 201-219. | MR | Zbl
, :5 Intersection theory. Springer: Berlin-Heidelberg-New York 1984. | MR | Zbl
:6 Arithmetic intersection theory. Publ. Math. I.H.E.S. 72 (1990), 94-174. | Numdam | MR | Zbl
, :7 Arithmetic analogs of the standard conjectures. In: U. Jannsen, S. L. Kleiman, J-P. Serre: Proceedings of the conference on motives, Seattle 1991, Proceedings of Symposia in Pure Mathematics 55 I (1994), 129-140. | MR | Zbl
, :8 Characteristic classes for algebraic vector bundles with hermitian metrics I, II. Annals of Math. 131 (1990), 163-238. | MR | Zbl
, :9 A Lefschetz decomposition for Chow motives of abelian schemes. Invent. math. 113 (1993), 85-102. | MR | Zbl
:10 Arakelov Chow groups of abelian schemes, arithmetic Fourier transform and analogues of the standard conjectures of Lefschetz type. Math. Ann. 300 (1994), 365-392. | MR | Zbl
:11 Hodge index theorem for arithmetic cycles of codimension one. Alg. geom. e-prints, March, 94. | Zbl
:12 Differential analysis on complex manifolds. Grad. texts in math. 65, Springer: Berlin-Heidelberg-New York, 1980. | MR | Zbl
: