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Abstract. Let (M, P) be a Poisson manifold. A 2-form w of M such that the Koszul bracket
{w,w}p = 0 is called a complementary form of P. Every complementary form yields a new Lie
algebroid structure of T'M, and, under some supplementary hypothesis, the form also defines a
Poisson-Nijenhuis structure of M [12]. We give several examples of complementary forms, and new
examples of Poisson-Nijenhuis manifolds. The general results are expressed in the framework of
Hamiltonian structures [3] and Lie algebroids.

The motivation of the present paper comes from the theory of the Poisson-Nijenhuis
structures which is being studied in connection with the integrability of Hamiltonian
dynamical systems [3, 12, 7, 16] etc.

The main result will be that certain 2-forms of a Poisson manifold M, with the
Poisson bivector P, provide the manifold with a Poisson-Nijenhuis structure, and,
in particular, all the symplectic-Nijenhuis structures are generated in this way.

As a matter of fact, the interplay between Poisson-Nijenhuis structures and
2-forms was investigated in [12]. The difference is that the 2-forms w of the
present paper may not be closed. Instead, they are asked to satisfy the dual Poisson
condition {w,w}p = 0, where the bracket is that of Koszul [8]. Such comple-
mentary forms w induce a new Lie algebroid structure on 7'M. Under a sup-
plementary hypothesis (in particular, if closed), a complementary form yields a
Poisson-Nijenhuis structure of M.

In the paper we give several examples of complementary 2-forms, and new
examples of Poisson-Nijenhuis structures. These examples include the compact
Hermitian symmetric spaces (where any harmonic 2-form is a complementary 2-
form), foliated manifolds with a bundle-like symplectic form, the Kodaira-Thurston
symplectic manifold, Riemannian manifolds with a parallel 2-form, etc.

To gain in generality, the main results will be given in the framework of Lie
algebroids, and the existence of the bracket of 1-forms is proven in the case of a
general Lie algebra endowed with a linear representation [3].

1. Preliminaries

To make this paper reasonably self-contained we shall review the most important
notions and formulas needed. In particular, we shall start with a full review of the
extension of a Poisson bracket to 1-forms because this bracket will be essential in
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what follows. Moreover, we consider this bracket in the general algebraic frame-
work of [3], [4] since this framework is important in applications, and we believe
that it is worth recording the proof of the fact that the bracket of 1-forms satisfies
the Jacobi identity in its full generality. Essentially, the proof is the same as the
one given in [7]. In the general case, the vector spaces involved are not reflexive,
and one of the consequences of the fact that the proof also holds in this case is that
there exists a Lie bracket of 1-forms on Poisson-Banach manifolds as well.

Let x be a (real) Lie algebra with a given representation on a (real) vector space
F . The reader should think of x as the Lie algebra of vector fields of a differentiable
manifold M, and think of F as C°°(M ), but keep in mind that we have much less
structure in the general case and, in particular, F is not a ring, and X is not an
F-module. However, we may define various spaces of ‘tensor fields’ such as

N(X) = Lran(x X -+ X x, F),

k times

LRalt(/\l(X) X oo X /\I(X)v}-)v

k times

Il

VE(X)

TF = Lr(x x -+ x x x A{(x) X -+ x AY(x), F),

h times k times

etc., where Lr denotes spaces of R-linear mappings. But, of course, these spaces
may not be the same as the tensor product spaces of the same type and, in particular,
x may be only a subspace of V! ().

Then, we shall denote by (, ) the usual pairing on either x x Al() or Al(x) x x,
and, using the classical formulas of differentiable manifolds, we shall define the
operators

d: AF(x) = A (), (X)) AR — AN, Lx T () — TE (),

where X € x. All the algebraic properties of these operators which involve only
the existing general structure hold in the general case as well. For instance, on
A¥(x) we have

Ly = di(X)+i(X)d, W
([X,Y]) = Lxi(Y) —i(Y)Lx (X,Y € x), '

etc.
For our subject it is important to look at the space

Alx) = {H € Lr(A' (x), X))/ VA p € AN (x), (A Hp)=—(HM\p)}. (1.2

Clearly, A(x) C V?(x) (H istobe seenas (H A, ut)), and the characteristic property
of (1.2) is called the skew-symmetry of H. Furthermore, one has an important
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operation called here the Gel’fand-Dorfman bracket |, ]: A(x) x A(x) = V3(x),
defined VH, K € A(x) by [3]

[H,K)(e,,7)= Y {(KLuaB,7)+ (HLraB,7)}- (13)
Cycl(a,8,7)

Following [3], if H € A(x) and [H,H] = 0, H is called a Hamiltonian
operator. We shall also say that the same H is a Poisson structure on F since the
Poisson bracket defined by

{f.9} = (Hdf,dg) (f,9€F) (1.4)
is a Lie bracket:
> {{f.9},h} = 5[H, H)(df,dg,dh) = 0. (1.5)
Cycl(f,9,h)

The following lemma is crucial [7]

LEMMA 1.1. Let H € A(x) and let us define, Vo, 3 € Al(x),

{a,B} = Lo — Lupo — d{Ha, §). (1.6)
Then, Vv € N (x),YX € x, one has
(v, H{a,B}) = (v, [Ha, HB)) + §[H, H)(e, 3,7), (1.7)
> ({H{eBh9), X) = [H,LxH)(a, B,7)+ (1.8)
Cycl(e,8,7)

+.1- Z [H,H](a,ﬂ,d<’)’,X))
Cycl(a,3,7)

Proof. Let us make the following computation which uses the skew-symmetry
of H:

<H{a’/8}77> = <HLHOtﬁ77> - (HLHﬁa77> + (H7)<Ha7ﬂ>
= (HLuaB,v) = (HLupe,v) + (LB, Ha) + (8, [Hy, Ha])
= —(LuaB, Hv) — 3[H, H)(@,8,7) = (Liav, HB)

+(8,[H~, Hal).

If the Lie derivatives in the first and in the third term above are made explicit,
and after reductions, we get exactly (1.7).
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Now, in order to prove (1.8) we define an operator d.: V¥(x) — V¥t1(x) by
using the formula of an exterior differential, and the bracket { , } instead of [, ].
Namely, VX € x, we put

(d.X)(a, B) := (Ha)(X,B) - (HB)(X,a)-
—(X,{o, 1) 2 (a, (Lx H)B).

Of course, the skew-symmetry of H was used, and it follows from it that

(1.9

(LxH)(a):=[X,Ha]- H(Lx«)
is also skew-symmetric. Then, we put

(d2X) (e, 8,7):= Y, {(Ha)((d"X)(8,7))
Cycl(r,f,7) (1.10)

—(d*X)({av ﬁ}a 7)}7

and, if we replace here d* X by its definition (1.9) and use (1.7), we get
(d2X)(e,8,7) = > {({{e,8},7}, X)-
Cycl(e,8,v) (1.11)
—%[HvH](avﬂvd(’Y?X))}'

On the other hand, if we replace d*X by the final result of (1.9) in (1.10), we
obtain

(d?X)(e, ,7) Y. A(Ha)(B,(LxH)y) — ({a, B}, (LxH)7)}

Cycl(a,8,7)
= > {{LuaB,(LxH)y)+ (B,[Ha,(LxH)y])
Cycl(a,8,7)
~(LuaB,(LxH)v)+ (Laga,(LxH)y)
+(Lx H)v){Ha, §)} (1.12)
= > {(B,[He,(LxH)) - (v,(LxH)Lupa)
Cycl(a,8,v)

+<ﬁ7 [(LXH)77 Ha]) + (L(LXH)'yﬂv Ha>}
1.3
D (1, Ly H(a, 8,7).
The comparison of (1.12) and (1.11) yields the required formula (1.8). a

From Lemma 1.1 we deduce
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THEOREM 1.2. (i) [H, H] = 0 iff H{e, 8} = [He, HB). i) If [H, H] = 0, the
bracket (1.6) is a Lie bracket on A'(x), and (a € N(x), f € F) — (Ha)f is
a representation of the Lie algebra (N'(x),{, }) on F. iii) Assume that (x, F)
satisfy the following restrictions: 1° F is a ring with unit and the representation of
X on F is by derivations; 2° if, VX € x, Xf=0(f € F), then f = const. in F;
3°ifVX € x, LxT = 0(T € TF(x), (h, k) # (0,0)), then T = 0; 4° A!(x) is
the span of the set {df | f € F} over F. Then, if the bracket (1.6) is a Lie bracket,
one has [H, H] = 0.

Proof. (i) [4], [7]. If 0 # X € Y, obviously, there exists ¥ € A!() such that
(v,X) # 0. Hence, if [H, H] = 0, (1.7) implies the required result.

(ii) [7]. Since [H,LxH] = (1/2)Lx[H, H], (1.8) shows that [H,H] = 0
implies the Jacobi identity for the bracket (1.6). The second assertion follows by
using (1.7) again. (iii). (1.6) implies {df,dg} = d{f, g}, where {f, ¢} is given by
(1.4). Hence, the Jacobi identity for (1.6) implies 3 cyci(s,q,1) 4({{f,9},h}) =0
i.e., in view of 2°, chc,(f%h)({{f,g}, h}) = const. Accordingly, (1.8) and (1.5)
imply Lx[H, H](df,dg,dh) = 0, Vf,g,h € F, and the restrictions 3°,4° allow
us to conclude that [H, H] = 0. (1° is needed to make 2° and 4° meaningful.) O

Thus, if we agree to call a triple (x,F, H) as above, with [H,H] = 0, a
Hamiltonian algebra, the main conclusion is that a Hamiltonian algebra also has a
Lie bracket on A!(y), which is given by (1.6), and is compatible with H. W e call
it the dual Lie bracket of the given Hamiltonian algebra.

REMARK. Actually, in applications, an even more general algebraic structure is
needed [4] namely, that of a Lie algebra x with a representation on a given cochain
complex C = (332, QF, d: QF — QF+1 42 = 0). By such a representation we
mean a mapping X — i(X) € Lg(QF, QF1),definedVX € x, Vk =0,1,2, ...,
such that ¢( X )i(Y) 4+ #(Y)i(X') = 0 and that (1.1) (with the formula of Lx seen
as a definition) holds. Then, y is represented on Q0 in the usual sense, and, if in
the algebraic computations needed for the Lemma 1.1, we replace F by Q°, Al(x)
by !, X f by i(X)df, (X,a) by i(X)a (X € x, f € Q°, a € Q!), the brackets
(1.3), (1.4) will be defined, and Lemma 1.1 will be valid again. But, Theorem
1.2 will be true only if: (1) for (i), one also asks that, if for a given X € x and
Va € Q! (X,a) = 0, then X = 0; (2) for (ii) one also asks that, if for a given
ac QandVX € x, (X,a) = 0, then a = 0. A triple (x,C, H) as above, with
[H, H] = 0, may be called a Hamiltonian complex, and such triples, precisely, are
encountered in applications [3], [4].

From the geometric point of view, it is natural to look at Hamiltonian algebras
in the framework of Lie algebroids. We agree that all the differentiable manifolds
bellow are finite dimensional, unless specifically mentioned otherwise, and the
frame-category is the C'*° category.
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First we remember that a Lie algebroid (e.g., [11]) isavectorbundle 7 : I — M
endowed with a Lie bracket [, g on the space I'E) of the global cross sections
of E, and with an anchor bundle morphism A: £ — T M which is Lie bracket
preserving and satisfies the condition

[81,f52]E = ((Asl)f)SZ + f[sl,SZ]E, VS],SQ ecTlF. (1.13)

For a Lie algebroid F it is possible to extend the usual calculus on differen-
tiable manifolds if cross sections of £, A¥ E and A* E* are used instead of vector
fields, multivector fields and differential forms, respectively, and if derivatives
(As)f (s € T'E) are used instead of those given by vector fields. In other words,
the classical case is just the case where £ = T'M, [, |g is the Lie bracket of vector
fields, and A = Id. If the classical formulas are changed as indicated above, we
obtain an ‘exterior differential’ dg, a ‘Lie derivative’ Lf etc. which have the usual
properties [11, 7], etc.

In particular, we also obtain a Schouten-Nijenhuis bracket of ‘E-multivector
fields’ defined, for instance, as the R-linear extension of the formula

[SIA <= ASg, ST A -~ ASi]E =
k h o
= (=D (=) s, SHlEA SIA -+ A3 (1.14)
=1 j=1
Ao ASEASTA - ASGA - A sy,

where s;, s; € T'E and a hat means the absence of a factor. Our sign conventions
are those of [10] and [15], and we may see as in the classical case (e.g., [15]) that,
if (1.14) is extended to a bracket [\, u]g (A € TA¥ E,u € T AR E), the result is
independent of the decomposition of A and p into sums of products as in (1.14).

The reader will find in Section 6 of [7] a complete study of the operations
described above. In particular, if one defines grade(\) = k£ — 1 for A € TAFE, and
one multiplies (1.14) by (=1)**1, [, | is the operation of a graded Lie algebra
where dg is an antiderivation.

Now, from the previous definitions, it follows that, if we put x = '/ with the
bracket [, |g, F = C*°(M),and with the representation sf = (As)f(s € TE, f €
C*°(M)), we can use the algebraic results of the first part of this section.

In particular, the space A(x) defined by (1.2) is just I'A% E, and the oper-
ators d¥, i(s), LE are those which were denoted previously by d, i(X), Lx.
Concerning the Gel’fand-Dorfman bracket (1.3), one can check that it is just
the Schouten-Nijenhuis bracket of the corresponding E-bivector fields, and, here-
after, we shall speak only of Schouten-Nijenhuis brackets. (There are no general
Schouten-Nijenhuis brackets on the spaces V*(x) of a general pair (x, F).)

Accordingly, we define a Poisson structure or a Poisson bivector on E as an
element © € I' A2E which satisfies the condition

[0,0]g =0. (1.15)
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Moreover, YO € I'A2E, there is an associated dual bracket of T E* defined by
(1.6). We shall denote the Hamiltonian operator H associated with © by fo(= {):
E* — FE.More precisely, { is defined by

(fa, A) = O(a, A),YA e TE™. (1.16)
The corresponding dual bracket (1.6) will be written as
[, Blps = LEB — LEa — dp(0(a, B)), (1.17)

where a, 8 € TE*.
Now, Theorem 1.2 yields

THEOREM 1.3. © € T'A%E is a Poisson structure of E iff
fle, BlE = [fo, 1B]E (1.18)

holds. A Poisson structure © of a Lie algebroid E induces a Lie algebroid structure
on the dual vector bundle E* with the bracket (1.17) and with anchor A* =

Aotfe.
Proof. The only fact that we still must check is (1.13), and this follows by a
simple computation. a

We shall say that the obtained structure of E* is the dual Lie structure with
respect to ©. In view of (1.18), § is a homomorphism of Lie algebroids. It is also
important to notice that, in view of (1.14), (1.18) extends to the general Schouten-
Nijenhuis brackets of E*,[, ]g+ and E,[, |g, if we extend § to A € T'A*E*
by

(ﬁ/\)(al, ak) = (—l)k)\(jial, ﬂak) (a,' € I‘E*). (1.19)

Using the terminology defined above, it is well known that a Poisson manifold
is just a differentiable manifold M with a Poisson structure P on the Lie algebroid
(T'M,1d.). We refer the reader, for instance, to [18] or [15] for the theory of
Poisson manifolds. Accordingly, (1.17), where L and d are the classical operators
on a manifold, is a Lie bracket of 1-forms, and, following the usual custom, we
shall denote it by {, 8} p. This bracket and § make 7 M into a Lie algebroid dual
to T'M with respect to P.

The dual Lie structure of T M, where M is a Poisson manifold, was discovered
and studied by many authors (e.g., see the references given in [7]). In particular, the
dual Schouten-Nijenhuis bracket {, } p of differential forms on a Poisson manifold,
which is essential for the present paper, was first studied by Koszul [8]. One also
has

PROPOSITION 1.4. If ¢ : (M, P1) — (Ma, P5) is a Poisson mapping, Y\ €
/\kMz, U E A M, we have

e {A pnha = {e" A e . (1.20)
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Proof. In this proposition we used the notation I A T*M = A*M (and we
shall continue to do so hereafter), and the indices 1, 2 signify brackets associated
to the Poisson structures Py, P5. That ¢ is a Poisson morphism means

{frghaop={fop,g00} (1.21)

where f,g € C*°(My) and {f, g} = P(df,dg).
It follows straightforwardly from (1.21), (1.17) and (1.13) that Vf,g,h €
C*° (M) one has

©™{df,dg}r = {¢"df, p"dgh,
©™{df, hdg}> = {¢"df, ¢"(hdg) },

and, then, it is clear that (1.20) holds for any 1-forms A, y of M>. This result extends
to arbitrary differential forms using (1.14) a

The previous definitions and results were described in the finite dimensional
case, but many of the known applications of Poisson-Nijenhuis structures to inte-
grability questions are for infinite dimensional situations. These applications can
be studied either by using infinite dimensional manifolds [12] or by an algebraic
machinery [3], [4], [7].

We end this section by the indication of the way towards a theory of Poisson-
Banach manifolds [12]. Let M be a Hausdorff C'*® Banach manifold [1]. Then, we
define a Poisson structure of M to be a Lie bracket { , } on C°°(M) such that,
VfeC®(M),{f, .} := Xy is avector field called the Hamiltonian vector field
of f. Thus

{f,9} = Xy9=dg(Xy) = =X, f = —df(Xy), (1.22)

and we see that there exists a cross-section H of the vector bundle Hom(7™* M,
T M) such that

Xy = H(df), {f.9} = (H(df),dg). (1.23)

It is not very useful to look at the ‘Poisson bivector’ P(df,dg) = {f, g} for the
following two reasons: (i) the model of M may not be reflexive and P may not
define H, (ii) the Schouten-Nijenhuis bracket can be defined in the usual way for
sections of A*T M but not for sections of L, (T*M x --- x T*M,R).

Thus, the characteristic feature of the theory is that we must look rather at
fp := H than at P itself, and a Poisson-Banach manifold is a Banach manifold M
endowed with an operator H such that (1.23) is a Lie bracket of functions. This
means that H is a Hamiltonian operator as defined in the first part of this section
ie., [H,H] = 0, for the bracket (1.3) [3]. The definition of a Poisson-Banach
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structure H may be extended to Lie-Banach algebroids and the results of Theorem
1.3 remain true.

2. Symplectic-Nijenhuis manifolds

We begin with the definition of the Poisson-Nijenhuis structures on Lie alge-
broids.

Let 7: E — M be a Lie algebroid of anchor A4, and let B: £ — E be a vector
bundle morphism. Then the Nijenhuis tensor of B is

NB(s1,82) := [Bsi, Bsy)g — Bls1, Bs2lg — B[Bs1,82)p + B*[s1,)5, (2.1)

Vs1,8, € TE. If Ng = 0, B is called a Nijenhuis endomorphism of E, and (2.1)
shows that

[s1,s2]B := [Bs1,82)E + [s1, Bs2)g — Bls1, $2)E (2.2)

defines a new Lie algebroid structure of anchor A o B on E. Now, a Poisson-
Nijenhuis structure of E is a pair (0, B), where O is a Poisson structure and B is
a Nijenhuis endomorphism of F, such that

01(o1,02) = (Bfeo1,02) (01,00 € TE™) (2.3)

is skew-symmetric, and the dual brackets (1.17) defined by the pairs ([, |z, ©)
and ([, ]B, ©) coincide.

Moreover, if [, ];3 is any Lie algebroid structure of £ with an anchor of the
form A’ = A o C for some Lie algebroid endomorphism C' : E — E, it follows
easily that, Vsy,s2 € T'E,

[s1, 5205 = [s1, 8200 + S(s1, 52), 24)

where S is an E-valued 2-‘ E-form’. (Check that [s1, s3]z — [s1, s2]¢ is C®(M)-
bilinear.) The triple ([, ], C, ©) where O is a Poisson structure of Eand A’ = AoC
is called a generalized Poisson-Nijenhuis structure of E [16] if the conditions of
the definition of a Poisson-Nijenhuis structure given above are satisfied, except for
the fact that B is replaced by C, and that we may have N # 0, but we must have
Vo € TE”

i(fo0)S = 0. 2.5)

A Poisson-Nijenhuis structure is characterized by the skew-symmetry of ©; of
(2.3) and by [7] (see also [16])

ool . B—roL{,B+dg(0(r,0))0 B —dg(O(r o B,o)) =0, (2.6)

oo
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Vo, 7 € I'E*. The same relation with C' instead of B characterizes the generalized
Poisson-Nijenhuis structures.

As mentioned in Section 1, the Poisson-Nijenhuis structures are interesting in the
integrability theory of Hamiltonian systems. This is a consequence of the following
main property [7]: if (O, B) is a Poisson-Nijenhuis structure of the Lie algebroid
E, the pairs (O(k),BP), where p,k = 0,1,2,---, O@) = O, and Oy, k > 1,
are defined inductively by formula (2.3), are again Poisson-Nijenhuis structures,
and [Oxy, Oyl = 0. Similarly [16], if ([ , ]5,C, ©) is a generalized Poisson-
Nijenhuis structure so are ([ , 5, C, ©()) and, again, [ (), ©(4)]r = 0. The last
equality is known as the compatibility of the corresponding Poisson structures.
The above mentioned structures are called the Poisson-Nijenhuis hierarchy of
the original structure. Under certain regularity conditions, the existence of the
hierarchy implies that the eigenvalues of B are Poisson commuting first integrals
of Hamiltonian systems [12].

As we already said, most of the applications of the theory of Poisson-Nijenhuis
structures to integrability problems regard infinite dimensional Hamiltonian sys-
tems, and they appear either in the context of Hamiltonian complexes (see Section
1) [3], [4] or in the context of Poisson-Banach manifolds [12]. Therefore, if not
geometry but integrability is the main interest, the definition of the (generalized)
Poisson-Nijenhuis structures should be formulated in corresponding terms. It is
easy to understand that this definition can be given in exactly the same way for a
Hamiltonian complex (x,C, H ),and a ‘tensor’ B € Lgr(x, x) and, in particular, for
the case of the Hamiltonian algebra with x = x(M ), F = C°°(M), where M is a
Banach manifold endowed with a Poisson structure H as defined in Section 1. In
the last case, we get the notion of a Poisson-Nijenhuis-Banach manifold. The exis-
tence of the Poisson hierarchy of a Poisson-Nijenhuis-Banach manifold was proven
in [12], along with the finite dimensional case, since the computations of [12] are
also valid on Banach manifolds. Moreover, in fact, these computations require only
algebraic properties of Lie derivatives, exterior differentials and Gel’fand-Dorfman
brackets. It follows from this argument that they remain also valid for Hamiltonian
complexes which satisfy part i) of Theorem 1.2, and for Hamiltonian algebras.
Furthermore, the existence of the Poisson hierarchy is ensured in these cases as
well and, in particular, in the case of Lie- Banach algebroids. (On the contrary, we
couldn’t use the proof of [16] for the same purpose since this proof uses the fact
that the Jacobi identity for the bracket of 1-forms implies the Poisson character of
a bivector, and this may not be true in the general cases mentioned above.)

Now, we come back to the finite dimensional Lie algebroids, and we restrict
our attention to the most important case, that of a Poisson-Nijenhuis manifold,
where £ = T'M with the usual Lie bracket, and A = Id., and, particularly, to
the symplectic-Nijenhuis manifolds. These are symplectic manifolds M, with the
symplectic 2-form ¢ (do = 0), and with a Nijenhuis (1, 1)-tensor field B such
that (P, B) is a Poisson-Nijenhuis structure of M (i.e., of T M), where P is the
Poisson bivector which has the same Poisson brackets of functions as the symplectic
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form o. If §-1: TM — T*M is defined by §71(X) = «(X)o (X € TM), P is
characterized by §po}>! = —Id., or by the fact that its matrices of local coordinates
are P = o1,

The case of the symplectic-Nijenhuis manifolds is the case where the basic
applications of the theory to integrability problems actually appear [12], and, for
this reason, they provide us with the motivation of our study.

On a symplectic-Nijenhuis manifold (M, o, B) there exists a unique 2-form w
such that

i5' =1t,"0 B, Q2.7)

where ! is defined in the same way as f ! but, while {7 ! is indeed the inverse
of a mapping, §-"! is just a notation which, for uniformity, we prefer instead of the
more common b,,; §, itself does not exist if w is not nondegenerate. Indeed, (2.7)
and (2.3) imply VX, Y ¢ TM

w(X,Y)=0o(BX,Y) = P(§;'X,1,'Y), (2.8)

where P is the ©; of (2.3) in the present situation, and (2.8) accounts for the
skew-symmetry of w. We say that w is the associated 2-form of (M, o, B), and we
prove

THEOREM 2.1. The associated 2-form w of a symplectic-Nijenhuis manifold
(M, o, B) satisfies the conditions

{w,w}p=0, dw=0. (2.9)

Conversely, if a 2-form w of a symplectic manifold (M, o) satisfies (2.9), w is
associated with a symplectic-Nijenhuis structure (M, o, B), where B is defined by
2.7).

Proof. Since §p is an isomorphism, the first relation (2.9) is equivalent to
[fpw, fpw] = O i.e., to the fact that § pw defined by (1.19) is a Poisson structure of
M . But, it follows easily from (2.8) that § pw = Py, and, since P; belongs to the
Poisson hierarchy of the structure, the required condition holds.

Now, let us make the interesting remark that, on every symplectic manifold
(M, o), and for every differential form A one has [7]

d) = {o,\}p. (2.10)

Indeed, if the coordinate expressions of o and )\, and the formula (1.14) are used
to compute {o, A} p, the result is the coordinate expression of d A. (See [15] for the
general formula of the coordinate expression of the bracket of two forms.)

Accordingly, the second condition (2.9) is equivalent to {o,w}p = 0 and,
therefore, to [fpo,fpw] = [P, Pi] = 0. But, the last equality holds since the
structures of the Poisson hierarchy are compatible.
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Conversely, if we have a 2-form w satisfying (2.9) on a symplectic manifold
(M, o), Py = §pw will be a Poisson structure of M, compatible to P (as above),
and, by a known result [12], [16], (P, —}p, o ;) is a Poisson-Nijenhuis structure
of M. But, Va € T*M, and VX € T M at the same point of M, we have

(a,tp ;' X) = Pi(i;' X, @) = w(tpt; ' X, fpa) = (o, fpi; ' X),  (11)

ie, —fp, o ;! = B, for B defined by (2.7). O

REMARK. A comparison of Theorem 2.1 with Proposition 2.1 of [12] shows
that a closed 2-form w on a symplectic manifold satisfies {w,w}p = 0 iff it
satisfies the hypothesis d& = 0 of [12] for the 2-form &(X,Y) = w(X, {p4'Y)
(X, Y eTTM).

Theorem 2.1 is advantageous since it is easier to work with differential forms
than with Nijenhuis tensors. This fact is illustrated by the following examples.

PROPOSITION 2.2. Let M be a compact Hermitian symmetric space with metric
¢ and Kihler form o. Then, any harmonic 2-form w of M is associated with a
symplectic-Nijenhuis structure (M, o, B), where B is defined by (2.7).

Proof. The result is proven if we check that w satisfies the first condition (2.9)
since, by harmonicity, dw = 0.

By the results of Koszul [8] (see also [15]) the bracket {\, u}p of differential
forms A € A* M, . on a Poisson manifold is expressible by

(A nyp = (BN Ap+ (DA A (1) = 8(A A ), (2.12)
where 6§ = i(P)d — di(P). Hence, the first condition (2.9) means
20w) Nw — 6w Aw) =0. (2.13)

Furthermore, Brylinski [2] (see also [15]) proved that, in the case of a symplectic
manifold, ¢ is just the symplectic codifferential, which is known from [9] where it
is also proven that a Kéhler manifold has the property § = C'é,C'. In this formula,
4, is the Riemannian codifferential of the Kahler metric g, and C' is defined on
forms by applying the complex structure tensor J to the arguments of a form (e.g.,
(171).

Now, if w is harmonic, Cw is also harmonic (e.g., [17]) and, in particular,
6,Cw = 0. Therefore, 6w = 0. Finally, on a compact Riemannian symmetric
space, the exterior product of harmonic forms is harmonic (e.g., [5]). Thus, in our
case w A w is harmonic, and §(w A w) = 0. Hence (2.13) holds. a

In order to give a second example we define first an auxiliary notion. Let F be
a foliation of a differentiable manifold M. A symplectic form o of M (if it exists)
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is said to be F-bundle-like if: (i) the leaves of F are symplectic submanifolds of
(M, 0); (ii) for any pair of F-projectable vector fields (i.e., vector fields which
have projections onto the space of leaves of 7) X, Y which are o-orthogonal to F,
o(X,Y') is constant along the leaves of . The name bundle-like is used because
the situation is similar to that of bundle-like Riemannian metrics (e.g., [14]).

PROPOSITION 2.3. Let (M, o) be a symplectic manifold which has a foliation F
such that o is an F-bundle-like symplectic form. Let B be the projection on T'F
according to the decomposition 7'M = NJF @ T'F where N F is the o-orthogonal
bundle of T F. Then (M, o, B) is a symplectic-Nijenhuis structure.

Proof. First, we notice that, in this Proposition, what we have is a Dirac bracket
(i.e., a Poisson bracket computed along the leaves of a foliation with symplectic
leaves e.g., [10], [15]) which satisfies the supplementary condition (ii).

In the following computation we shall use the bigrade or type of forms induced
by the decompositionTM = NF @ TF, and the corresponding decomposition

d= dl(l,O) + dl(lo,l) + 8(2,_1) (2.14)
of the exterior differential (e.g., [14]). In particular, we have a decomposition
and d o = 0 is equivalent to

do’ =0,d"c" =0, de" =0, d"o' + 9" = 0. (2.16)

Since the leaves of F are symplectic, the leafwise Poisson brackets of functions
in C°°( M) exist and yield a Poisson structure, say D, of M, known as a Dirac
bracket. More exactly, Vf € C°°(M ), we have a leafwise Hamiltonian vector field
X P defined by i(XP)o” = i(XP)o = —d"f. Therefore, XP = §pd"f (tp o
i-! = ~Id.), and

D(df,dg) = {f,g}p = o"(XP, X)) = o"(tpd"f,4pd"g) = o"(4pdf, tpdg),

since the added terms d’ f, d’g have no contributionto the result. Hence, D = §po”,
and, because D is a Poisson bivector, we have

{¢",0"}p = 0. 2.17)

Until now, we referred to any Dirac bracket. If we add the condition (ii) of the
definition of an F-bundle-like symplectic form, we also get that d”¢’ = 0 (the
equivalence of the latter condition with property (ii) is rather obvious). Then, it
follows from (2.16) that we also have do” = 0, and, by Theorem 2.1, o” is associ-
ated with a symplectic-Nijenhuis structure. The Nijenhuis tensor of this structure
isB=—-fpo ﬂ;,}, and it is easy to see that, VX € TM, if X = X1 0) + X(o,1),
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then BX = X(O,l)' a

We end this section by a nice concrete example of a compact symplectic-
Nijenhuis manifold. Namely, we take M to be the Kodaira-Thurston example of a
non-Kihler symplectic manifold: the quotient of R* by the group of transforma-
tions

(¢!, 2?2, 2%) = (a! + p,2® + ¢,2° + ¢z* + m, 2 + n), (2.18)
where p, g, m, n are integers. The symplectic form of M is
o = dz! A dz? + dz3 A da?, (2.19)

which is invariant by (2.18). Assume that ¢ = ¢(z!,22) and ¢ = ¥(z*) are well
defined on M (i.e.,invariant by (2.18)), and take

w = (2!, 2?) dz' Ada? + p(z*)dz® A dat (2.20)

(invariant by (2.18), again). Clearly, dw = 0, and a straightforward computation
based on (1.14) yields {w,w}p = 0, where {p o ji;l = —1Id. Hence, by Theorem
2.1, w is associated with a Poisson-Nijenhuis structure whose Nijenhuis tensor B
will be given by

0 0 0 0 0 0 0 0
Bt =va,m Bz =952 B =Vam Bom = Vo

Notice that B has exactly two eigenvalues, hence, it leads to the integrability of
the Hamiltonian dynamical systems which leave w invariant [12].

2.21)

3. General complementary 2-forms

Theorem 2.1 suggests the following general definition: let 7: &2 — M be a Lie
algebroid of anchor A, and © a Poisson structure of £; then a2-F-formw € TAZE*
will be called a complementary 2-form of O if

[w,w]gx = 0. (3.1)

Then, (O, w) is a complemented Poisson structure of E, and, in particular, if
E=TM, A=1d., (M,0,w)is acomplemented Poisson manifold.

Generally, the complementarity condition (3.1) is not equivalent with the con-
dition of [12] quoted in the Remark which follows Theorem 2.1. The main result
on complementary 2-forms is

THEOREM 3.1. Let (O,w) be a complemented Poisson structure of the Lie alge-
broid F, and let B: F — FE be defined by

B=teof," (-2)
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Then, the bracket definedVsy,s, € T'E by

[S],Sg]lE = [81,32]5 + ﬂ@i(sl)i(SZ) drpw 3.3)

provides F with a new Lie algebroid structure of anchor map A o B.

Proof. By Theorem 1.1, we may see the dual bundle E* of E as a Lie algebroid
with the dual Lie structure induced by © and the anchor A* = A o fo. Then, by
(3.1), the complementary 2-form w is a Poisson structure of E£*, and it induces a
dual Lie algebroid structure on E with the anchor map A* of;! = Ao B. By (2.4),
the bracket of this structure is

[s1,82)5 = [s1,82]B + S(51,2), (3.4

where 51,5, € T'E and § € T(E ® A2E*). We shall prove that ' is precisely the
last term of (3.3).
By (1.17) we have

[s1, 82 = Lg,slsz - LY, 51— dp+(w(s1, $2))- 3.5)

H'
Here, we may replace Voo € T'E* Vs € I'E

LE" s = i(a)dg«s + dg+i(a)s, (3.6)

e

and, furthermore, by known results of [10] and [7],

dg+s = —[0,s]p = —LF0. (3.7)
We get
[s1, 8205 = i(45 " 82) LEO — i(45" 1) LE© + dpe(w(s1, 52)). (3.8)

Now, let us take o € I' E*, and evaluate:
(i(42"52) 15,0, a) = (L 0)(45 " 52, @)
= (As1)(O(H5 ' s2,0)) = O(L 5 s2,0) = O(f7 " 52, L )
= (As1)(Bs, ) — O(L} i(s2)w, @) — (Bsa, Ly, )
= (a,[s1, Bs2]g) — O(L5i(s2)w, ).
Therefore, we have

i(15'52) L0 = [s1, Bsalg — fo L}, i(s2)w. (3.9)
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Of course, we have a similar expression for the second term of (3.8) and, with
that, (3.8) takes the form (3.4) with

5(81,82) = dEt(oJ(sl,Sz)) + ﬁ@(Lgi(Sl)w — (LSE]'ZI(.SQ)OJ) + B[S],Sz]E. (3.10)

In (3.10) we may replace B by (3.2) and, also, use the fact that Vf € C>°(M),
we have

dp+f = —feodr/f, 3.11)

which follows from the definitions of dg, dg» and from A* = A o §o. Then, we
obtain

S(s1,82) = fo(—dp(w(s1,s2)) + Lii(s1)w

(3.12)
—LYi(s2)w) + i([s1, 82]2)w),
and if we use (3.6) for w instead of « and the classical formula
i([s1,2)p)w = LEi(s2)w — i(s2) L w, (3.13)
we arrive at the required expression
S(s1,82) = foi(s)i(s2)dpw. (3.14)
a

The result which connects the complementary forms and the Poisson-Nijenhuis
structures is

THEOREM 3.2. With the same notation as in Theorem 3.1, if
i(foa)i(fof)dpw =0, Va,p€TE", (3.15)
then the Lie algebroid structure (3.3), together with the morphism (3.2) and the

Poisson structure O, is a generalized Poisson-Nijenhuis structure of E. If the
stronger condition

i(foa)dgw =0, Va € TE*, (3.16)

holds (in particular, if dgw = 0), and if the anchor A of E is injective, then (O, B)
is a Poisson-Nijenhuis structure of E.
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Proof. That (0, B) give rise to a E-tensor (2.3) which is skew-symmetric is
trivial. To check (2.5) for § of (3.14) we take o, € 'E* and t € T'E, and
compute

((:(4eB)S5)(t), a) = (S(feB,1), o)
= (foi(foB)i(t)dpw), @) = —dpw(t, fof, foa) = 0,

if (3.15) holds.
Furthermore, if (3.16) holds, we have Vo € 'E*,Vs,t € T'E,

(ﬁ@i(s)i(t)dva a) = _dEw(tv S, ﬁ@a) =0,

and S of (3.14) vanishes. If this happens, (3.3) reduces to [s1, 2] = [s1,52]B-
Applying the anchor A o B to this equality, and using (2.2), (2.1), we get

[ABs1, ABsy] = AB[s1, ] = A([Bsi1, Bs2]g — NB(s1,%2)) =
= [ABsy, ABsy] — ANB(s1,$2),

and, if A is injective, this implies A'g = 0.

To finish the proof of Theorem 3.2, we have to check, for instance, that (2.6)
holds.

First, we notice the following auxiliary formula whose validity is checked
VYa € I'E* by evaluatingon s € T'F:

ao (foly") = 15 e = i(foa)w. (3.17)

Then Vs € I' EZ, and with the notation of (2.6), we get:

(00 L (foots') — 7o Lf ,(fo o 2"),s)

= (o, [fo7, (fo o 12 "s]E) — (0, fe o 15 [teT, sE)
—(7,[fe0, (fo o 85 's]E) + (. e 0 15 [te0, s]E)

= —(too,[7, 42 s]5+) + (fo, [0: 45 s] ")
+{teo, 5 e, slz — (fo7, 15 [fo0, sl&)

= —0(o,[r,i(s)w]g+) + O(r, [0, i(s)w]E+) + w([foT, 5]z, foo)
—w([feo, s]g, for) = (d+O)(1,0,i(s)w) — (AeT)(O(0, i(s)w))
+(Afe0)(O(, i(s)w)) — (Aot s)(O(7,0)) + O([r, op+, i(s)w)
tdpw(fer, feo, s) — (AfeT)(w(leo, s)) + (Afeo)(w(teT, s))
—(As)(w(fer, 00)) + w(fe(r, o]p+, 5) = dg-O)(7, 0, i(s)w)
+dpw(for, foo, s) — (Afels's)(O(T,0)) + (As)(O(T o fe o 5", 0)).
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In this computation, we used the expression of an exterior differential, and the
auxiliary formula (3.17), and we made all the possible reductions. Now, if we look
at the obtained result, and take into account that

dp+© = —[0,0]5 =0

(see (3.7)) and that we have (3.15), we see that (2.6) is true, and the proof is
finished. d

Theorem 3.2 shows the existence of an interesting class of (generalized) Poisson-
Nijenhuis structures. A complementary 2-form w will be called a (generalized)
Nijenhuis complementary form if it satisfies (3.16) ((3.15) in the generalized
case).

In what follows, we use these notions in the case of Poisson manifolds. We
have

PROPOSITION 3.3. Let ¢ : (M;, P;) — (M, P>) be a Poisson mapping, and
let wy be a complementary 2-form of P,. Then w; := ¢*w, is a complementary
2-form of Pj. Furthermore, if w; is (generalized) Nijenhuis, and if

p«(imfp ) = imfp, (3.18)

(e.g., if (M, Py) is symplectic) then wy is also (generalized) Nijenhuis.
Proof. The result is an immediate consequence of Proposition 1.2 and Theorem
3.2. a

COROLLARY 3.4. The symplectic realizations of a complemented Poisson man-
ifold are complemented symplectic manifolds.

COROLLARY 3.5.If (M, P,w) is acomplemented Poisson manifold, the pullback
of w to either a symplectic leaf S of P or the local transversal germ N at z¢ € S is
a complementary 2-form of .S or N, respectively. In particular, if w is a Nijenhuis
complementary form, the leaves .S are symplectic-Nijenhuis manifolds.

Proof. The inclusions of .S and N in M are Poisson mappings and, obviously,
the inclusion of S in M satisfies (3.18). a

It is less difficult to find examples of complemented Poisson manifolds than it
is to find Poisson-Nijenhuis structures.

First, notice that if (M, o) is a symplectic manifold with P = ‘o~! then w is
a complementary 2-form of o iff §pw is a Poisson structure P; of M. Thus, on
symplectic manifolds, complementary 2-forms are equivalent to Poisson structures,
and every new Poisson structure P; of (M, o) yields anew Lie algebroid structure of
the form (3.3) on 7'M withanchor B = §pof ! Itiseasy toseethat{p = —Bofp,
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whence the symplectic foliation of Pj, im fp; coincides with im B. Of course, the
symplectic 2-form o is complementary to its own Poisson structure P.

Next, let (M™, P) be a regular Poisson manifold with rank P = 2k < m. Then,
the symplectic foliation S of P is regular, we may choose a transversal distribution
N &, and we may use the bigrading technique inducedby TM = NS® TS as we
did in Section 2. In particular, P has type (0,2), the space A1°M of the forms of
type (1, 0) is equal to ker  p, and the latter is an abelian subalgebra with respect to
the bracket (1.17) of the present case (e.g., see [15]). Accordingly, by (1.14), every
form w of type (2, 0) will be a complementary 2-form of P,and B = §pof;! = 0.
We also have dw = d'w + d”w, where the terms have the type (3,0) and (2,1),
respectively. Therefore, (3.3) reduces to

(X,Y] = $pi(X)i(Y)dw (X,Y € TTM), (3.19)

and (3.15) holds. But this remark is not interesting since B = 0.

Furthermore, if a regular Poisson manifold (M, P) has a 2-form w which is
parallel with respect to a Poisson connection (i.e., a torsionless connection V such
that VP = 0) then w is a closed complementary 2-form of (M, P), and it yields
a Poisson-Nijenhuis structure on (M, P). Indeed, using (1.14) and a technical
computation, one gets the local components [15]

ek
{w7w}Pi|i2i3 = —6qulzqzzi3(Psuwukvswj1j2 + ijlwvjzkauv)v (3.20)

where V is an arbitrary torsionless connectionof M. If VP = Vw = 0, {w,w}p =
0 as claimed.

For instance, if a Riemannian manifold (M, g) has a parallel 2-form w, and
if we put P = f,w, then it is clear that P is a Poisson structure of M, and the
Riemannian connection V of (M, g) is a Poisson connection. Accordingly, the form
w is complementary to P and (P, {p o § ') is a Poisson-Nijenhuis structure.

Another example is provided by the results of Section 12 of [12]. Namely,
if G is a Lie group, and P is a right(left)-invariant Poisson structure on (G, one
has {a, 8}p = O for any left(right)-invariant 1-forms «, 3 of G. Indeed, for any
left(right)-invariant vector field X we have Lx P = 0, and we get

({a,B}p, X) = (LyafS — Lypa — d(P(a, 3)), X)

= (fo)(B(X)) + B(Lx (1)) — (18)((X)) — (L x(45))
-X(P(a,B)) = P(Lxa,p)+ P(a,LxB3)— Lx(P(e,0)) = 0.

(In the computation above, we wrote § instead of §p.)

Now, it is clear from (1.14) that if w is a left(right)-invariant 2-form we shall
get {w,w}p = 0. Hence, any left(right)-invariant 2-form is complementary to any
right(left)-invariant Poisson structure of G. If we also require dw = 0, we get the
Poisson-Nijenhuis structure of Section 12 of [12].
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For a final example, let P be the Lie-Poisson structure of the dual space G* of a
finite dimensional Lie algebra G (e.g., [18], [15]), and let r € A?G be a solution of
the classical Yang-Baxter equation [r,r] = 0, where the bracket is the algebraic
Schouten-Nijenhuis bracket of G (the extension of the bracket of G by a formula of
the type (1.14), e.g., [15]). Then r can be seen as a ‘constant’ (i.e., with constant
components) 2-form on G*, and, since it follows easily from the definition of the
Lie-Poisson structures that the brackets { , }p and [, ] are the same for ‘constant’
forms, the 2-form r is a closed complementary 2-form of (G*, P) and it provides
the latter with a ‘constant’ Poisson-Nijenhuis structure. (See also Section 14 of
[12] and [6].)

Finally, let us notice that it is not possible to extend Theorems 3.1 and 3.2, as they
stand, to either Poisson-Banach manifolds or Hamiltonian algebras or complexes.
Indeed, if (x, F, H) is a Hamiltonian algebra as in Section 1, we might try to
define a complementary form as an element §3' € Lgr(x,A!(x)), which can be
extended to the bidual of x with respect to F, and such that the Gel’fand-Dorfman
bracket {§-!,4-'}, defined for the dual bracket of the given Hamiltonian algebra,
vanishes. But, the dual bracket of such a complementary form is on the bidual of
x and not on Y itself.

Added in Proofs. The new book: Dorfman I., Dirac structures and integrability of
nonlinear evolution equations, J. Wiley & Sons, New York, 1993, is also available
now for the general algebraic Hamiltonian theory of Gel’fand and Dorfman to
which we referred in Section 1.
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