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0. Introduction

0.1. Consider the Zariski site on the category V of connected algebraic schemes
over a perfect field k. Denote the structure sheaf on this site by the symbol O. We
assume familiarity with the notion of OJ-modules as laid out in [21] pp. 28-32. On
the Zariski site we have a dualizing complex of O-modules (A®, {Tv}) (which is
unique up to unique isomorphism), i.e.

1. Foreach V' € V, A}, is a residual complex (cf. [7] ch. VI, Sect. 1).

2. If V is proper, there is a map of complexes Ty: I'(V, A},) — k such that the
pair (AY,, Tv) is a residue pair (cf. [28], p. 120, [29], 1.2 and also 1.6.1 of this
paper).

3. For every cartesian square in V of the form

1 L /74
- f
v W,

with 7, 7 open immersions, Wy and W, proper over k, the relation j*T; =

B! o B holds, where

- Bii* Ay, =AY, Bt 7 Ay, — Ay, are the natural restrictions of the Zariski
sheaf A®.

— Ty: f« ARy, — A}y, is the homotopy unique map such that Ty, is homotopic
to Tw, o F(Wz, Tf).

(cf. [29], 1.2.3).1

! In [29] the exposition is for the category of k-varieties, i.e. integral k schemes of finite type.
However the notions of (and results concerning) dualizing complexes on V carry over to our situation.
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Dualizing complexes exist—indeed in R. Hartshorne’s book [7] one is essentially
constructed — and are unique up to unique isomorphism (cf. [29], 1.2.6).

The principal aim of this paper is to realize (A®,{Tv}) concretely in terms
of differential forms and cohomological residues. Cohomological residues have
been developed by J. Lipman, E. Kunz, R. Hiibl (cf. [21], [22], [19], [13], [15],
[14]). We will also use, heavily, the modifications of these constructs as worked
out by L.-C. Huang in [10] and [12]. Later in this introduction, we will discuss
the difference between our approach and A. Yekutieli’s approach in [31} where
he constructs a concrete model for (A®, {Tv }) on reduced algebraic k-schemes.
Yekutieli relies heavily on the theory of residues of differential forms of local fields
(rather than the residues of (local) cohomology classes, which we use). This theory
was developed by A. N. Parshin, V. G. Lomadze, A. A. Beilinson and, in the case
of topological local fields by Yekutieli himself (cf. [26], [27], [24], [1] and [31]).
Yekutieli has extended his work to include all algebraic schemes over k (cf. [33]
and [32]).

0.2. TRACE STRUCTURES

Let V € V. Residue Complexes on V' are built out of the various injective hulls of
the residue fields k(v ) (thought of as a Oy ,,-module) as v varies in V. For a concrete
model of the injective hull we follow Grothendieck [4] (as does Yekutieli in [31]).

If o: L — Oy, is a pseudo-coefficient field? then K(o) := Hom&(Oy ,,w, ) is
an injective hull of k(v), where Ov,u is given the m,-adic topology and w, = ¢ L/k

(d = tr.deg(L/k)). Given another pseudo-coefficient field o/, how do we assign a
canonical isomorphism between K(¢) and K(o”) ?

One immediate observation is that (K(o),e,) represents the functor
Hom, (—, we ) of Ov,,-modules with zero-dimensional support.

In view of the above, if v € V is a smooth point, then there is a natu-
ral isomorphism between K(c) and K(o’) described as follows: First, the pair
(H4QY /1) TeSq ) represents the same functor that (K(c), ;) does, where d =
dim Oy,, n is the dimension of the irreducible component containing v, and
res, is the residue in 4.2.1 (cf. 4.2.2). Thus we have a canonical isomorphism

K(o)"HJ(,;)- Similarly we have another isomorphism K(o") = H}(Q3 ;)

induced by res,, and hence an isomorphism K(o)—K(c”).

If v € V is not smooth, we achieve the isomorphism K(o)—>K(c’) by first
shrinking V' around v if necessary, and then imbedding V' into a smooth algebraic
k-scheme W as a closed subscheme. In greater detail, if w is the image of v in W,
and 7 a pseudo-coefficient field at w which is a lift of o, then K(o') can be thought
of as the submodule of K(7) annihilated by the kernel of the k-algebra surjection
Ow,w— Oy, If 7' is alift of o', the isomorphism K(7)—=K(7') described above

2 In other words & is a k-algebra homomorphism such that ¢ followed by the natural surjection
Ov,,—k(v) is a finite field extension.



RESIDUES AND DUALITY FOR ALGEBRAIC SCHEMES 135

restricts to an isomorphism K (o)~ (o’). This last isomorphism is independent
of the auxiliary lifts 7 and 7/ (cf. 4.5, 4.5.1, 4.6 and 4.6.1) and of W (4.6). We also
show in 4.7 that if V' is reduced, this isomorphism agrees with the one deduced by
Yekutieli in [31], 4.3.13.

Let ¥9': K(0)—K(0") be the above isomorphism. Then ¥7,' o W9 = ¥3" for
a third pseudo-coefficient field o (cf. 4.6.2). Set K(v) := lim— K(c). K(v) is an
injective hull of k(v). Here are some functorial properties of K(v)-axiomatized as
a ‘trace structure’ in 5.1, and proved in 5.3 — which are crucial in constructing a
concrete model of A®:

1. For every pseudo-coefficient field o of v, there a o-linear map t,: K(v)—w,
such that for an Oy ,-module M with zero-dimensional support, the natural
map (induced by t,)

Homavyv(M, K(v))—Hom,(M,w,)

is an isomorphism.
2. For amap V—W in V such that v is closed in the fibre f~! f(v), there is an
Ow, j(v)-linear map (unique by 1. above)
010+ K(0)=K(f(v)),
such that ¢, o 05, = t, for every pseudo-coefficient field 7 at f(v),
where o is the pseudo-coefficient field at v obtained by composing 7 with

the natural map Oy, ¢(,)— Ov,,. Further, (K(v),6y,,) represents the functor
Homg (M,K(f(v))) of Oy,,-modules M with zero-dimensional support.

3. If v is a smooth point, there is an @v,,,-linear isomorphism (unique by 1. above)
v K(0) "> H (),

where d = dim Oy, and n is the dimension of the irreducible component of
V containing v.

The residue machinery developed in Section 3 and Section 4 is used not just to
define K(v), but also the maps 6 ,, mentioned above. Section 4 concentrates on the

case of pseudo-coefficent fields, and works out the isomorphism K (o)—=K(o’)
mentioned above.

0.3. CONSTRUCTION

If V is smooth we set K}, = E{,(Q?,/k)[n], where n = dim V. Now drop the
assumption that V' is smooth. For v € V let K(v) denote the sky-scraper sheaf
on V induced by K(v). Suppose there is a closed immersion i: V—X with X
smooth. Then using 6; ,,, there is an isomorphism of graded quasi-coherent sheaves

t —Homo, (Ov,K%), where Kf, = Dav)=p K(v). The right side of the
above isomorphism is a complex, and hence induces a structure of a complex on
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the graded sheaf Ky,. This structure is independent of the immersion V — X, as we
show in Section 6.

By construction, the coboundary map on K3, localizes well. Hence if V' € V
is arbitrary, we may cover V by open subschemes {V,} each of which admits a
closed immersion ¢,— X, with X, smooth, and then define a complex K3, by
glueing together the K}, . The collection {KY, }v ey, with the obvious notion of a
restriction, forms a complex of O-modules K*. From the construction, if V' is a
closed subscheme of a smooth scheme, then Ay, —K%,. It turns out (cf. 8.7) that
A* is isomorphic to K* as a complex of OJ-modules.

0.4. TRACES

Let f: V—W be a proper map in V. We construct a map of complexes 0;: f.K}, —
w which is concrete realization of the trace map 7: f, A}, — A}y, in Duality
theory (cf. [7], VI, Section 4).

First, we extend the definition of 6y ,: K(v)—/K(f(v)) to points v which are
not closed in the fibre f~!f(v) by setting ¢, equal to zero in this case. Let
0f.0: fK(v)—=K(f(v)) be the resulting map. We show that 8 = T,cvfy,:
<Ky, —K3y is a map of complexes and that 6 is a concrete realization of T
(cf. Section 8, Proposition 8.1, Theorem 8.6 and the remarks in 8.5). We do the
above in two stages. In Section 7, we deal with the case where W = Spec k. In
Section 8 we tackle the relative case. We use the main theorem of Section 2, viz.
2.1, in an essential way to show that 6 is a map of complexes. In fact if W and
f are smooth, 2.1 applies immediately. This is used to show that if f is finite and
dominant then 6 is a map of complexes. This last case enters in an essential way
to take care of arbitrary proper f.

0.5. COMPARISON WITH YEKUTIELI’S CONSTRUCTION

If V™4 is the full subcategory of V consisting of reduced algebraic schemes, then
in [31] Yekutieli constructs a sheaf of (-modules C* (denoted K° in ibid.) on the
Zariski site on V™4, which he calls the ‘Grothendieck Residue Complex’. C* is
isomorphic to A* (cf. [28], especially the exercise on p. 126).

As we mentioned in 0.1, the construction involves residues of meromorphic
differentials on topological local fields. This (non-cohomological) residue is used
(among other things) to establish the isomorphism K(o)—K(o') discussed in
0.2 (cf. [31], 4.3.13). Yekutieli defines a ‘System of Residue Data’ ([31], 4.3.10)
— an axiomatization of what is required to construct C* — and using his non-
cohomological residues, the existence of such a system is established (cf. [31],
4.3.16).

In our paper we eschew the residues of the Russian school ([26], [27], [24], [1])
as well as the topological-algebra machinery (semi-topological rings, topological
local fields) of Yekutieli, and use instead the residue machinery developed over the
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years by Kunz, Lipman, Hubl and Huang cited in 0.13. If V € V™9, then up to a
sign our complex K3, agrees with Cy, (cf. 9.3) provided V' is equidimensional.

While this work was in progress, Yekutieli developed a theory of continuous
diferential operators on ‘Beilinson Completion Algebras’ (cf. [33]) using which
he extends his results in [31] to the entire category of algebraic k-schemes and
constructs a dualizing complex of O-modules in V in [32]. He also has traces for
proper morphisms. The interest then is in our techniques which are substantially
different from Yekutieli’s. A work of related interest is [11] of Huang.

1. Cousin complexes

We assume familiarity with the notion of a Cousin complex as laid out in [7],
as well as the explicit description of Cousin complexes given by [17], [18] and
[2]. (See also [14] Section 2). In this section we point out another description of
the Cousin complex associated to a quasi-coherent sheaf F on a scheme X (cf.
[71, p. 232, (2.3) and the Definition in ibid, p. 235) in a very special situation (cf.
Proposition 1.2 below).

1.1. Let R be a noetherian ring of finite Krull dimension, which is equidimen-
sional. In this case the ‘height function’ h : Spec R—Z (here h(p) is the height of
p) is a codimension function, i.e. h(p) = h(q) + 1 for every immediate special-
ization q+— p in Spec R. Let M be an R-module such that Supp(M) = Spec R,
i.e. anng M = 0. For any prime ideal p in R, we set H,(M) = H?S%)“}(Mp). Let
E% (M) be the Cousin complex of M with respect to the filtration on Spec R given
by ZP = {p € Spec R|h(p) < p}. Then E}{(M) = C&(M), the Cousin complex
associated to the system of denominators S = S(M) = S(R) (cf. [2], [17] and
[18] for details)*. By [2] (5.3), for any p € Spec R,

ER(M)= D ER,(My).
h(p):p
One checks easily that Ef, (M) = H,(M) for p = h(p). Moreover, under this
identification, a generalised fraction

m/g ] P
e B, (M
[flv‘”vfp Rp( )

as defined for example in [2], p. 18 (cf. also Section 2 of [14]) gets identified with
the corresponding generalized fraction as defined for e.g. in [21], p. 59. We use the
convention that

g [fl,r.n./.gffp] = [g,fT-/-l-,fp] ! (111

3 For some time, the connection between the two kinds of residues was not clear (though El-Zein’s
work [3] was a potential bridge). However Yekutieli’s work opened up possibilities, and a connection
was recently established (cf. [14] and [29]).

* If Supp (M) # Spec R, then C3(my = ERyr(M) where I = anng M.
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where ¢ is the coboundary map in C'¢(M ). This differs from the conventions
adopted by [17], [18], [2] by a sign.

The complex Eg(M) gives us maps 6, 4: H,(M)—H,(M) for p and q in
Spec R. This map is zero unless p — q. Here — denotes immediate specializa-
tion.

PROPOSITION 1.2. Let p+ q, so that pR, is a closed point of the punctured
spectrum U = Spec R,\{qR,}. Then with M the quasi-coherent sheaf on U
induced by M, 6, 4 is the natural composition

Hy(M)—HP(U,M)—H,(M),

where p = h(p).

Proof. An element £ € H,(M) can be represented by a generalised frac-
tion, which for typographical convenience we denote by m/g//f, where f =
(fi,..., fp) isin SP. Let Y be the closed subscheme of U given by the vanish-
ing of the f;. Then, by definition of a system of denominators, Y consists of a
finite number of closed points, which correspond to certain prime ideals py, ..., p,
of R of height p. Note that p occurs in this list. Since { € H,(M), therefore
Ei0,,,06 = 6p,4€. Let Up be the open subscheme of U on which g never vanishes,

andfor: = 1,...,p,let U; be the open subscheme of U on which f; never vanishes.
We are precisely in the situation examined in [21], pp. 78-81 (with F = M) and
we are done by ibid, (8.6). O

1.3. NOTATIONS. Let X be a noetherian equidimensional scheme of finite Krull
dimension. For z € X, let h(z) denote the dimension of the local ring Ox , and
for p > Oset Z? = {z € X | h(z) < p}. For F quasi-coherent on X, E%(F) will
denote the Cousin complex of F with respect to the filtration Z* as defined in [7],
p. 235. Moreover, E%(F[d]) will denote the complex E% (F)[d].

Note that if Supp(F) = X, then E% (F) can be described by 1.2.

1.4. Let Z be a Noetherian scheme of finite Krull dimension. Let 2z € Z, and
suppose M is a Oz ,-module with zero-dimensional support, i.e., every element
of M is annihilated by some power of the maximal ideal of O .. Define a quasi-
coherent O z-module by

(a) For U an open subset of Z,

- (M if zeU
M(U) _{ 0 otherwise

(b) Fora pairof opensets V C U, with z € V, the restriction map M (U)— M (V)
is defined to be the identity.

If 2/ € Z is a specialization of z, and N is an Oz ,;-module with zero-

dimensional support then each Oz ,; homomorphism ¢: M — N gives rise to
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an Oz-module map ¢: M — N. Conversely, an Oz-module map 1: M —N
determines a unique Oz ,»-homomorphism ¢: M — N such that ¢y = ¢.

1.5. RESIDUAL COMPLEXES

Recall that a complex of quasi-coherent O z-modules F* on Z is called residual if
F* = @,z J(2), where J(z) is an O, injective hull of the residue field at z, and
if the cohomology sheaves of F* are coherent. In this case, there is an associated
co-dimension function d: X —Z such that F?P = @d(z)=p J_(z), p € Z (cf. [7],
p. 287, Remark 4 and [7], pp. 305306, Proposition (1.1) (c)).

We refer the reader to [7], Chapter VI for further details about residual
complexes.

1.5.1. Conventions

(a) In this paper, for any residual complex R® on Z, and any z € Z, R(z) will
denote the direct summand corresponding to z, and R(z) the corresponding
Oz .-module. In other words, if d: Z—Z is the codimension function corre-
sponding to R°®, then R(z) = (I',R*)[d(z)]. Thus if F* is the complex in 1.5
above, then F(z) = J(z). Further, for z € Z, with d(z) = p, i,: R(z)—RP
will denote the natural inclusion, and 7,: RP—7R(z) the natural projection.
(b) As in [28], we say that a residual complex R® on Z is normalized if d(z) =
—dim({z}) for every z € Z, where d is the codimension function associated
with R*.
1.6. Let K be an Artin local ring; {p} := Spec K and I an injective hull of
the K -module K /mp (where mg = the maximal ideal of K). Let f: X —{p}
be a finite-type morphism of schemes. For each closed point © € X, let (X )
be the category of Ox .-modules with zero-dimensional support (in the notation
of [10], Section7, (X, )s is the category (Ox ;)4 Let Mod, be the category of
Ox z-modules. Define

F,: (X;)s—Mod,
by
F, = Homg(—,I).

Let () denote both the localization functors K (X )—D(X)and K ({p})—D({p}).
In analogy with [28] we make the following definition:

1.6.1. DEFINITION. Let f: X —{p} be proper. A pair (R*, 8) is called a residue

pair if

(a) R* is a normalized residue complex on X, and 8: f,R*—1I is a map of com-
plexes (here we identify quasi-coherent sheaves on {p} with K'-modules).
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(b) (QR*,Q0) is a dualizing pair, i.e. Q0: R f,R*— I induces an isomorphism
RHomY (F*,QR*)——RHom{ (R f.F*,I)
in D({p}) for every F* in D{,(X).

1.6.2. REMARK. Let f: X—{p} be proper. One can show that residue pairs
exist. This is a consequence of the fact that dualizing pairs exist and [7], p. 304, (1.1)
(cf. also p. 306, Remark 1 of ibid.).

Theorem 2 of [28] has the following generalisation:

THEOREM 1.7. Let f: X —{p} be a proper morphism; R*® a normalized residual
complex and 0: f,R*—I a map of complexes of K-modules. Then (R*®,0) is a
residue pair if and only if for every closed point v € X, the pair (R(z),0(z))
represents the functor F,, where 0(z): R(z)—1 is the natural inclusion R(z) C
fxR*® = T(X,R°®) followed by the map 0: f, R*—1I.

Proof. Suppose (R*®,0) is a residue pair. Let z € X be a closed point; M €
(X,z)s and g: M—1I a member of F,,(M). Let M be the quasi-coherent sheaf
associated to M as in 1.4. Since z is a closed point it is not hard to see that M is
a sky-scraper sheaf supported at z. Clearly M is flasque, and hence R f, M can be
identified with f, M. Let g: f. M —I be the O{py-map corresponding to g: M — 1.
By Grothendieck duality, and the fact that M is a Cousin Complex, it is immediate
that there is a unique Ox-map h: M —7R® such that § = 0 o f.(h) (cf. [7], p. 247,
Lemma (3.2)). It is trivial to check that this gives rise to a unique Ox ,-linear
map h: M —R(z) such that §(z) o h = g. Thus (R(z), 6(z)) represents the func-
tor F.

For the converse we need analogues of Lemmas 1, 2 and 3 of [28].

Let A be a local ring, essentially of finite type over K, such that K'/mg—A/my
is finite. Let Mod 4 denote (as usual) the category of A-modules, and Ay the full
subcategory of A-modules with zero-dimensional support. Define

F = FA—>MOdA
by
F = Homx(—,I).

Set K = Hom (A, I) where the superscript ‘c’ denotes continuous K -homomor-
phisms with A being endowed with its m4-adic topology and I with the mp--adic
topology. K is well-known to be an injective hull of the A-module A/my4, and
hence K € Ay. Let 7 € F(K) be the K-map K—1I given by ‘evaluation at 1°. We
then have the following lemmas (compare with Lemmas 1, 2 and 3 of [28]):

LEMMA 1.7.1. (K, ) represents the functor F.

LEMMA 1.7.2. Let (J,q,7) be a triple consisting of
(a) An injective hull J of the A-module A/my.
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(b) An element q € F(J).
(c) An A-linear map v: K—J suchthatqoy = 7.

Then 7y is an isomorphism and (J, q) represents F'.

LEMMA 1.7.3. Let 8* and S’® be normalized residual complexes on A (i.e. the
corresponding complexes of quasi-coherent Ogpec(4) complexes on Spec(A) are
normalized residual). Let S(m) = I',(S*) and §'(m) = T (S'*), where Ty, is the
functor ‘sections supported in m’. Then

(a) Amorphisma: S®*—S8'* is anisomorphism ifand only if the map T'y(@): S(m)—
S'(m) is an isomorphism.

(b) If 8’ is equal to S* in (a), then « is the identity map if and only if I'y,(a) is
the identity map.

The proofs of Lemmas 1.7.1, 1.7.2, 1.7.3 are, mutatis mutandis, as in Lemmas
1, 2 and 3 of [28] (cf. pp.122-124 of ibid.).

Now suppose (R*®,6) is a pair such that R® is normalized residual, and
6: fR*—1 is a map of complexes such that (R(z), 8(«)) represents F}, for every
closed point z € X. Let (F*,%) be a residue pair (cf. 1.6.2). Then we have a
unique map o: R*—F* such that ¢y o f,a = 6. Lemmas 1.7.2 and 1.7.3 then show
that « is an isomorphism. a

2. Cousin complexes and equidimensional maps

Let f: X —Y be a dominant map of schemes. We assume throughout that X and Y
satisfy the assumptions in 1.3 and that f is equidimensional of dimensiond. Let h x
and hy denote the height functions on X and Y respectively. When no confusion
is likely to arise, we suppress the subscripts X and Y in ES,, EY-, hx and hy. For
v€ X,andy €Y, write H, = HY® and H, = H)""). Then B = @y, o
and E; = @h(y)=7‘ Hy.

Let F be a quasi-coherent O x-module. We define for z € X, a map

Pt Ho( F)—H (o) (R £ F)

as follows (withy = f(z))

(a) if z is not closed in f~!(y), then ps, =0
(b) if z is closed in f~!(y), so that h(z) = h(y) + d then with
Xy, = X Xy (Spec(Oyy))
Fx, = FQ®x Xy

Yy

r = h(y)

we let p ;. be the composition
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H;'i—d(f) natural H}i.ld(y)(Xy’ ]_-Xy) ~ H;(Rdf*]:)

the isomorphism arising from the Leray Grothendieck spectral sequence. Thus
we obtain a map of graded-sheaves

ps: fEX(F[d)—EY (R f.F).
The main result of this section is

PROPOSITION  2.1. With above notations, suppose Supp(F) = X and
Supp(R2f.F) = Y. Then the map p; is a homomorphism of complexes.

Write 6% for the coboundary map in E% (F[d]) and §¥ for the coboundary map
in Ey. (R f.F).Letz € X,h(z) = r+d,and £ € HI*(F). We need to show

8 (pral) = 3 (prarba i) 2.1.1)

Tz’

We divide the proof of 2.1.1 into two cases: (a) when z is closed in its fibre, and
(b) when z is not closed in its fibre.

LEMMA 2.1.2. Suppose x is not closed in f~'(y), where y = f(z). Then
Epfw:éi{x,ﬁ = 0, where the sum is taken over v+—a' with f(2') = y and 2’ closed
in f~!(y).

The lemma gives 2.1.1 for z as in the lemma. Indeed, for such an z, by definition
pre = 0,andif 22’ and f(z') # y, then 2’ is not closed in f~! f(z') (cf. [7], p.
333, (3.4)).

Let V. = X,, W = Spec(Oy,), and g:V—W the equidimensional map
induced by f: X =Y. Let v € V be the point corresponding to z, and w € W the
point corresponding to v, i.e., the closed point of W.

Let ¥ be a finite set of closed points of g~!(w). Let G be the left exact
functor:

Gy =Ty1(y-x(V\Z, —)
and F¥, the left exact functor:

Fy =T5_s(V\E,-).
There are natural maps ¢y: Fx—Gy. For ¥ C ¥/ we have maps: ,ug,: I's — I'sy,
vE: Gy —Gsy and v%,: Fy— Fsy, which make {T's }; {Gx} and { Fx; } into directed

systems. Further,

O—»I‘E—>I‘g_1(w)—>Gg
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is an exact sequence of directed systems which is surjective on the right when
evaluated at a flasque sheaf. Moreover, ¢y/ 0 U = v o ¢5. Let the direct limits of
{I's}, {Gx}, and {Fx} be T's, Gg, and Fg respectively. Note that Fp = I'; and
we have a natural map I',—G'g. Let the derived functors of G's, Fy, G, I's be
G3,, F}, G} and H} respectively. Lemma 2.1.2 then follows from:

LEMMA 2.1.3. Let X be such that £ has a pre-image £’ under the natural map
FLt4(F)—HI*(F). Then the image of £ under

FEH(F)—H(V\S, F)—HG U (F)

is Ces 0y,(€) € HEFH(F).

We deduce Lemma 2.1.2 from Lemma 2.1.3 as follows. A ¥ of the sort assumed
in Lemma 2.1.3 always exists. Moreover the diagram below commutes and its top
row is exact. Consequently, the image of H’+t¢(F)in H ;f ld(*u;; (via the north-east
pointing arrow and the top row) is zero. Using Lemma 2.1.3, it follows that the

image of the sum Zvregéq‘f: 1N H;flﬁ;(}' ) is zero for X ‘sufficiently large’.

G?d HGt ™ (F) — HJEE(F)
HH(F) GHF) —— HFF(F) — H50(F)

FEt(F) — H™(V\E, F) — HLFHY(F)

2.1.4)
We now give the proof of Lemma 2.1.3.

Proof. LetU C V bean open setcontaining ¥ andlet Hy = '\ y_5)(U\X, ).
Then the direct limit of Hy, as U ranges over open sets containing %, is I',,. Let
I'(Us,—) and T'(Ug\X, —) be the direct limits over U D ¥ of I'(U,-) and
I'(U\X, —) respectively. Let their respective derived functors be H “(Us,—) and
H*(Us\X, —). Then for U D X, we have an exact sequence

0—T5—T(Us, —)—T(Us\E, -) (2.1.5)

with the right arrow being surjective when evaluated on flasque sheaves. The result-
ing connecting homomorphism H™+4(Us\ %, —)— H5t4+! is compatible with the
connecting homomorphism H"™+4(U\Z, —)— H&t**! in an obvious sense.
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Here is another description of Y,/cx6" (v,v’) in terms of this connecting
homomorphism. On taking direct limits, the natural maps Hy—I'(U\X, —)

give rise to a natural map I', = li‘} Hy—T(Ug\Z, —) and hence maps H:—

H'(Ug\X, —). Then Xz} s is also the composition

HIY( ) —H™H(Us\3, F)—HIHH(F) = @D HIFH(F).
z v
v'EeED

This follows from 1.2. Since the diagram

rv\y,-) —TI'(U\%,-) —T'(Us - &,-)

Hy = Fy Hy l—gBHU_F

commutes, and the composition of the arrows in the bottom row is precisely the
map Fy— M R, — T, therefore the composition FLX Y F)—HH(F)—
»/

H™ U\, F) is also the composition FLtY(F)—Ht4(V\X,F)—

H™4(Ug\Z, F). Now use the compatibility of the connecting homomorphisms
H™4(Ug\Z, ]—")—>H’“+d+l(}‘) and H™t4(V\X, F)—HEH 41 (F) as well as the
description of X, 625 .+ toreach the desired conclusion. o

LEMMA 2.1.6. Suppose z is closed in f~'(y). Then for an immediate special-
ization y — y', the equation

by z'Pfx' © Ex/(srx/ = 5 y' CpPfx (217)

holds, where the x' run through x — z' such that z' € f~1(y').

This lemma gives 2.1.1 for z closed in f~!(y). Indeed if z +— ', then &’ is
closed in f~! f(z') if and only if y — f(z') (apply [7], p. 333, (3.4)).

Proof. Let W = Spec(Oy,), V = X Xy W, and g: V—W the equidimen-
sional map induced by f. Let w, w’ € W be the points corresponding to y,y’ € Y’
respectively (so that w’ is the unique closed point of W). Let v € V be the point
corresponding to € X. Note that ¥ contains only closed points of V other
than v itself, and hence v has dimension 1. Thus N g~!(w) is a finite set, say
V1y..., 0. Set V! = V\{vy,...,v,}. Then v is a closed point of V. For simplic-
ity denote Fy by F. One checks that if u: H™+4(V\g~!(w), }')—>H’°+"lJrl (F)

-1 wl
and v: H"(w\{w'}, R%¢.F)—H"}'(R%g.F) are the corresponding connecting
homomorphisms (cf. [8], p. 9, Prop. 1.9), then the diagram
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HE ) (F) — B\ (w'), 7) C2 et o)

9= (w’

(2.1.8)

H](R%g.F) — H"(W\{w'}, R%,F) —“— H'F'(R%.F)

commutes, where the vertical isomorphisms arise, as usual, from the Grothendieck—
Leray spectral sequences. The sign (—1 )¢ arises from comparing the various spec-
tral sequences arising from a Cartan—Eilenberg resolution of g,J* where J* is an
injective resolution of F.

On the other hand we have a commutative diagram

HHV!, F) —F— D U (F)

=1

H(F)

(2.1.9)

HIH () —e BV — g7\ (0f), F) —s HIH ()

97! (w) g~ (w)

where fi is the connecting homomorphismof [8], p. 9, Prop. 1.9 . Since E{,(F[d]) =
Ey(F)[d), therefore o = (—1)*T7_,6Y, . Putting together 2.1.8 and 2.1.9 we see
that 2.1.7 holds. a

2.2. PROPER SMOOTH SCHEMES OVER AN ARTIN LOCAL RING

Let f: X —{p} be a proper smooth morphism of schemes where {p} = Spec(K)
is the spectrum of an Artin local ring K. Fix an injective hull I of the residue
field of K (thought of as a K'-module). Assume X is connected and has dimension
d. Define Q(f, to be the top exterior power of the sheaf of relative of forms of the
morphism f.LetK% = E ’(QC} ® f*I[d)).1t is well-known that K% is a normalized
residual complex. For a closed point € X letres ,: H g(Q?—aK) be the map on
the bottom of page 119 of [23] (cf. also [15], Definiton (2.1)). One application of
2.1 and 1.7 is the following

THEOREM 2.2.1. The map of graded O ,,-modules

/ = Zresz ®idr: f,Lx—K
f.I

(where the sum runs over closed points ¢ € X ) is a map of complexes. Moreover
the pair (K%, [7 1) is a residue pair.
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EXPLANATION. It is not very difficult to see that for a closed point z € X, the
Ox -module K(z) = HZ(Q}) @ 1.

Proof. Let [x /{p}: R4 f*Q‘}—J( be the integral in the main theorem of [16]
(pp. 750-752 of loc cit.). Consider the map of complexes given by the composi-
tion

FKY 2 EY(RUF(QD) @ ) ME’(O{,,} @I)=1.
By the definition of p and by the Residue Theorem of [16], p. 752, we see that this
composition is [ 1.1+ (See also bottom of p. 119, and top of p. 120 of [23]). This
gives the first half of the theorem. The remaining part follows from 1.7 and from
the results in the next section (cf. 3.11 and 3.12(a)). O

3. Residues
3.1. DEFINITIONS, NOTATIONS AND REMARKS

All rings considered are commutative noetherian.

(a) For a field extension L— K, we write trdeg; K for the transcendence degree
of K over L.

(b) If A—B is a local homomorphism between local rings, then we write
rel dim(B/A) for the relative dimension of B/A, i.e. for dim B — dim A.

(c) For any local ring A, we set m4 = the maximal ideal of A; and k4 = A/my4.
Let A— B be a local homomorphism of local rings, then the homomorphism
is said to be residually finite (resp. residually finitely generated) if k4—kp is
a finite (resp. finitely generated) extension of fields.

(d) €, (resp. €, s4) will denote the category whose objects are complete local rings,
and whose morphisms are residually finite (resp. residually finitely generated).
¢y will denote the subcategory of €, s, whose objects are complete local rings,
and whose morphisms are formally smooth ring homomorphisms.

(e) Let A— B be in &y;.

(i) We say that by,...,b, € B is a regular system of parameters (resp. system
of parameters) if mp = Bby + --- + Bb, + m4B (resp. the images of
bi,...,b, in B/my B are a system of parameters for B/my4 B).

(i1) Let ﬁg /A be the universally separated differential module of B/A, i.e.
Q}B/A = Q}B/A/ N; miBQg/A. For each integer p > 0, define the module
of universally separated p-forms of B/A thus:

Q%/A = /\%Q}B/A.

(f) If A— B is a morphism in €s, is as in (b) and k4—kp is of transcendence

degree ¢, then QIB/A is finite and free of rank r + ¢ (cf. [10], p. 14, (3.9)).

Consequently (ZTB+/”"A is finite, free of rank 1 (and hence isomorphic, non-
canonically, to B).
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(g) We assume familiarity with the generalized fraction notation for elements in
cohomology modules with supports in an ideal, and rules for manipulating
these generalized fractions (cf. for e.g. [15] Sect. 3, pp. 71-72 or [10], Sect. 2).

(h) Let A—R be in Cy,. Let t1,...,tq € R be a system of parameters for R/A.
Let ¢ be the transcendence degree of A/ma— R/mp. Let J = (t1,...,14)R.
Set M; = R/m';. Then there is a canonical isomorphism

HY(§5) lenl J‘_m. Homp(R/J?, HE (A% @4 My)).  (.L1)

The map is given via the identification

0 od
HYQES) @4 M; = HE (U3 @4 M),

3.2. RESIDUES FOR SURJECTIVE MAPS

Suppose we have a commutative diagram

A/P

\S

such that every arrow is residually finitely generated; S/A and P/A are formally
smooth algebras; and as indicated in the diagram P--S is surjective. Let the
relative dimensions of P/A (resp S/A) be n (resp. d). Let ¢ be the transcendence
degree of A/mg—S/mg. It is well-known that I = ker(7) is generated by a P-
regular sequence ty, ..., ?,_4 (cf. forexample [20],p. 314,C.4).Lety;,...,yg € S
be a regular system of parameters for S/A. If y,...,y, € P are pre-images of
Yi,...,yathenty, ..., tho_q,91,...,y, are aregular system of parameters for P/A.
For an A-module M of zero-dimensional support, we define a P-linear residue
map

Res 5/p,u: Hi (g3 © M)—Hy (O35 @ M), 3.2.1)

via the formula

sdyl...dyddfl,...,d§q®a}

Res S/P.M [ y?la SRR y;d

) (3.2.2)

lag

_ s'dty...dt,_qdy] ...Idy('idfi ..dE®a
tl,...,tn_d,ylal,...,yd
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where s’ is any pre-image of s € S;€1,...,&, € Saresuchthat{;+mg,...,{+mg
form a differential basis for 5/mg over A/my, and j,...,&, € P are any pre-
images of 1. .., &, (cf. [25], p. 201, for a definition of differential basis). Since

edty...dt,_gdy)...dy,dE) ... dE@a | _ 0
: =
tl,'--atn—day;alau-,ydad ’

for z € I (in view of the ¢y, ..., t,_4 occurring in the denominator of the general-
ized fraction), therefore the right side of 3.2.2 is well defined. Using the calculus for
generalized fractions (enunciated for e.g. in [15], Sect. 3, pp. 71-72, [10], Sect. 2
or [21], p. 60, 7.2) it is not hard to see that the map Resg, p 57 is independent of all
choices involved (i.e. of t1, ..., tn—ds Uiy > U &1y v s € €155 €.

We will write Res g/p (or even simply Res ) for Res 5 p 5 when no confusion
is likely to arise.

Let Js = (y1,...,yq4)S and Jp = (t1,...,tnd, Y15, Yy) P

Now

5 &5d &5d
HE Q85 @ M) = HI (Q5/1 © M) = Hj (Qg)1) © M,

and

HE(QpH @ M) = H3,(Q5)F © M) = HJ (V1) © M.

Set M; := A/m%. The maps Res s/p p, give us a map
P od AN
Res 5P g,0p,a0 Hig (Vg i) —HT, (Q5r1), (3.2.3)

via the isomorphism 3.1.1. We will write Res s/p,a (or Res s/p» and sometimes

even I{e\s) for Res S/P,Js,Jp,A When no confusion is likely to arise.
It is not hard to check that for an A-module with zero-dimensional support

Res g/p as = Res @ idy. (3.2.4)

PROPOSITION 3.2.5. Let P—@Q— S be a pair of surjective homomorphisms of
formally smooth, complete local A-algebras (A a complete local ring), residually
finitely generated over A. Then

(a) For all A-modules M with zero-dimensional support
Res Q/PM © Res S/QM = Res S/P,M>
(b)

Iie\SQ/pOiC\Ss/Q ZI{C\SS/IJ.
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Proof. The proposition is an obvious consequence of the definitions.

3.2.6. REMARK. It is not hard to see that Res s/p s gives an isomorphism a

HE (05 @ M)—>Homp(S, Hy (/4 @ M)).

3.3. FACTORIZATIONS

Let R—.-T be a morphism in €, ;,. We follow I-C. Huang (cf. [10](6.1)) and

call a triple (5, n, 7) a factorization of RLT, if n: R—S isin €5 m: ST is
surjective and T oy = f. A factorization (51,7, 7) of f is dominated by another
factorization (.52, 12, m2) of f if

) Tom =m;moT =17
(i1) 7isin Cy,.

(cf. [ibid.], (6.2)). In this case .55 as an Sp-algebra (via 7) is a power series ring
over 51 ([ibid.] (6.3)). We collect together some results of I-C. Huang.

LEMMA 3.3.1. [I-C. Huang]

(a) Every morphism in €, s, possesses a factorization.

(b) Any two factorizations of a morphism in &, ;, are dominated by a third.

(c) If (S, n, ™) is a factorization of f: R—T then there is an R-algebra isomor-
phism S~ R[X1,..., X)) /T where p € Spec(R[X1,...,X,]) and T is an

ideal of R[ X1, ..., Xy]}.

Proof. Proof of (a) is as in [10] (3.11), of (b) in [ibid.] (6.4). The assertion in
libid.] (3.11) is proved by producing a factorization with § = R[X1,..., X,];.
In view of this and (b), given any factorization (5,7, ), it is dominated by
(8,7, 7") where 8" = R[X1,..., X]}[|Y1,..., Yn|]. Clearly §' = R[X1,..., X,
Y1,...,Yy]} for some q € Spec R[Xj,..., Xy, Y1,...,Yn]. Since §' is a power
series over .9, there is a surjective map S'— S and hence (c) follows.

For f: R—T a morphism in &, 4, denote the collection of all factorizations of
f of the form R— R[X},..., X,];—T by Fy.

3.3.2. REMARK

(a) Given two factorizations (S, n1,7) and (52,72, m) of f: R—T, by 3.3.1.
(b) there is a factorization (.5, 7, ') dominating both (by say 71: 51— 5’ and
72: 52— 5"). Since S’ is a power series algebra over Sy (resp. S3), therefore
there is a surjective map p}: §'— S (resp. p5: 5'—52) such that p} o 7y = idg,
(resp. p5 o 2 = idg,). Using 3.3.1. (c) S’ is the homomorphic image of
S = R[X1,...,X,]}. Hence we can find (5,7, 7) € Fy and surjective maps
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p1:S—S1 and py: S—.5; such that p;on = m;, 7, 0op; = wfore = 1,2. In
other words we have a commutative diagram

S1

p1

52

with pq, py surjective. Diagrams like 3.3.3. will be useful when comparing
residues etc.
(b) Any two factorizations (51,71, 71) (52,72, 72) in Fy are dominated by a

third factorization in Fy. Indeed, if Sy =R[X",...,x")} and §,=

RIXP, . xP thenset 5= RIX(Y, . X X x PN where
p is the inverse image of mr under the natural map R[Xl(l),...,X,(ll),

x® . xP-T.

THEOREM 3.4. There exists a unique family of maps
Tes 574 M: HiA(ﬁ‘é/A Q@4 M)—M

one for each morphism f: A— S in €s, N €, s of relative dimension d, and for each
M € Ay such that

() res g/ 4, 01 is A-linear, and functorial in M € Ay.

) If S = A[X1,..., X4y, then res g4 v equals the map res x| x..s/a.m Of
[10] (7.1).

(c) If (P,n, ) is a factorization of f then res s/apr = T€S pjap © Resg/p g
where Resg,p yr is the map in 3.2.1.

Proof. Since any f: A—S in €5 N ¢, ¢ has a factorization (P,7n,7) € Ff
(ie. P = A[X1,...,X,]}), therefore (b) and (c) give uniqueness of the family
TeSS/AM 574 a1 Since resg/ 4 ps is functorial in M € Ay if § = A[X,..., X4},
and Resg, p, s is also functorial in M € Ay for any factorization (P, 7, 7) of A—S,
therefore functoriality in M € Ay will follow from the remaining assertions.

For general f: A—S in €s5 N &, we define resg 4,77 by taking a factoriz-
ation (P, n, 7) € Fy and setting resg/A M i=Tespia g o Resgyq g IF (P, 0/, 7')
is another member of F’;, we claim that res?” = rest. In view of 3.3.2(b) we



RESIDUES AND DUALITY FOR ALGEBRAIC SCHEMES 151

nat

may assume P’ = P[|Yi,...,Y;|], and that 7' is the composition A—-s P,
P[[Y1,...,Y,|] and 7’ is the composition P[[Y],...,Y|] =% P-"+5. One checks
readily that resp/4 = respija o Resp/pr. Since Resg/pr = Resp/pr o Resgp,
the assertion follows. Define resg; 4,z to be the common value of resf; JAM for
(P,n,m) € Fy. Assertion (c) above follows from 3.3.1(c), and the transitivity
property of Resg, p. O

34.1. REMARK. Let A—A[Xy,...,X4]; be in €. Corollary (7.7) of [10]
says that resy,  x,.s/p Of ibid. (7.1) does not depend on the order of the X;.
The discussion after the proof of ibid. (7.7) shows that the subscript Xy,..., Xy
(ordered or unordered) is unnecessary.

3.5. DEFINITION. Let f: A—S be a morphism in €7, N &, of relative dimen-
sion d, and let zy,...,24 € S be a system of parameters for S/A. Let J =
(.1[, ...,24)S. Note that for any M € Ay, there is a canonical identification

Hy (QS/A ® M) = H?(ﬁé/,; ® M). For i > 0, let M; = A/m’,. The maps
Ress/p ar, give us a map — the residue map of S/A along J

@?S/AJ:H}(QE‘%/A)—»A (3.5.1)
via the isomorphism 3.1.1.

PROPOSITION 3.6. Let A—S be a morphism in €5 N €5, and let J =
(z1,...,24)S5 be as above. Then

(a) Forany M € Ay,
reSS/A,M = I'/C\Ss/A’J ® ldM

() If (P,n, ™) is a factorization of A—S, and if zi,...,2},t,...,t, € P
are a system of parameters of P/A with w(z}) = z;, (¢« = 1,...,d), and
(ti,...,t,)P = ker(r), then with J' = (2},...,2l,t1,...,t,)P we have

res s/a,; =Tespsa g oResg/p g -

Proof. Assertion (a) can be proved from definitions. Part (b) follows from (a)
and part (c) of 3.4. a

3.7. SURJECTIVE BASE CHANGE

Let P be the push-outof f: A—B andg A—S,where f,g € €. Assume A— S is
surjective and A— B (and hence S —>P) is formally smooth of relative dimension
m. Let M € Ay and set N := Homu(S, M) € Sy. If # is the pseudo-functor on
¢, in [10] Section 6, then N ——g4M. Using the fact that fjgsM gl fa M we
get an isomorphism of P-modules:

HY (s ©s N)-"Homp (P, Hy (O, © M)). (3.7.1)
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If ¢: H (QP/S ® N)—»HQB(~§/A ® M) is the B-linear map gotten by following
the isomorphism above by ‘evaluation at 1°, then chasing various definitions one
sees that

¢[ ven ]:[;W")], (3.72)
1 »

aj a la
... e ., tlan

where t1,...,t, € P are a regular system of parameters for P/S,t},...,t,, € B
pre-images of t1,...,t,, V' € ﬁg /44 pre-image of v. The right-side does not
depend on the choice of v/, t},...,t! since 1)(n) is annihilated by I = ker(g). The
map ¢ does not depend on the sequence ¢y, ..., t,, either. One checks easily from
definitions that

Yporesp/y s =TreSg/aN O P

where 1 is ‘evaluation at 1°. One immediate consequence of the above is:

PROPOSITION 3.8. [Transitivity of Residues]. Let R-25S and S-25T be mor-

phisms in C;; N &, ¢ of relative dimensions d and n respectively. Consider T’ as an

R-algebra by comparing the above maps. Then

(@) For M € Ry, identifying Hr+ Qb © M) with HZ (07 ;@ HE (04, ®
M) (cf [10], p. 19, (4.5)(iii)) we have

eSt/rR,M = €S g/R,M OT€ST/S N>

where N = H3 (0% 5 © M).

(b) Let ty,...,tq € S be a regular system of parameters for S/ R, and extend this
to a regular system of parameters ty,...,t4,y1,...,Yn € T for T/ R (so that
Yly- .., Yn is a regular system ofparametersfor T/S) Let I = (ty,...,t4)S,

=Wy yn)T, J = IT+ 1. Identifying H}”d(ﬂ;ﬁé) with HI,(Q /5®s

H}l(ﬁg/R)), we have

TeS7/R,; = TeS s/R,j © (feS /s, ® idn),

where N = H?(Q%/R).
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Proof. Clearly it is enough to prove part (a). If § = R[X{,..., Xq]} and
T = S[Y1,...,Y,]q then itis not difficult to prove the assertion (cf. [10] (7.2)(1)).
In general we have a commutative diagram

!

B g P il T

R

where A = R[X1,..., Xa4p)), B = A[Y1,...,Ya44]2, the rectangle on the top
left corner is as in the beginning of 3.7. Existence of such diagrams can be seen,
for e.g., by picking a factorization R—A— S in F, , and one A—B—T in F,,,,
and setting P = B ®4 S. For an R-algebra R—U in C;, N &4, let G(U) :=
anU(Qb/R ® M), where t is the relative dimension of U/ R. For U as above, and a
U-algebra U—V in €s; N €, 5 of relative dimension s, let H(V') := H,f‘v(flﬁ,/U ®
G(U)). Then we can identify G(V') with H(V). Under this identification, the
map Res p/p: G(P)—G(B) can be identified with Res 5/4: H(P)— H(B). Now
replacing all the rings U in the diagram above by G/(U ), and replacing all horizontal
rows by Res (but going from right to left) and vertical arrows by res (but now
pointing downwards), we get a diagram that continues to commute (use the results
of 3.7 and 3.4). By previous comments res 4/ror1es g 4 = res g/g, and by 3.2.5(a),
Res p;p o Res r/p = Res 7/p, and hence

res g/pores/s =resg/poRes /g = res /g

as required. a

3.9. Let A be a complete local ring. Let R— S be a map of A-algebras with R/A
and S/A in €4, and S/ R a finite local (and hence global) complete intersection
algebra (so that S and R have the same dimension). In this situation, there is,
according to [20] Section 16, a degree zero map of graded R-modules

o%/r: Vya— 0 4 (3.9.1)
such that for each p € N, the map

0%, —Hom r(Qg/%, 0% 4)

M (@ > 0%, (wn))
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is bijective for each » € N.

Next let (P,n,7) be a factorization of R—S, and I = ker(m). Let
reldim(P/R) = n; that of R/A be d; and let ¢ := trdeg,, kr. Now [ is gen-
erated by a P-regular sequence t= (ti,...,%¢,—4). Note that ¢ forms a system of
parameters P/R and hence @P/R’]ZH?(Q%/R)—)R is defined. Set og/p =

O‘S/R (see 3.9.1 above).

THEOREM 3.10. In the above situation
(a) Let M € Ay and set N := Hd (Q}?/Z‘ ® M) € Ry. Identifying Hnﬁ:d(ﬁgﬁﬂ ®
M) with H? (Q p/r © N) we have:

res P/R,N o Res S/P.M = HmR(US/R (¢} ldM)
(b) Lety = (y1,...,ya) be a system of parameters for R/A (so that it is onefor
. o n n+d
S/A also). Then identifying H(t‘;)d (QP7A+q) with H} (Q P/ROR HydR( /Zl))
we have
(feS p/p,r ® id) o Res spys = Hyn(0s/R)-

Proof. Clearly it is enough to prove (a). By 3.4(c) and comments in 3.3.2
(esp. 3.3.3) we conclude that the compositionres p/r n o Res s/p pr 1s independent
of the factorization (P, n, 7). Since S/R is a global complete intersection there
is a presentation R[X7,..., X,]/(t1,...,tn)—S. Let Q = R[X1,...,X,] and
P = R[Xy,..., X,] where p is the inverse image of ms in ().

For any system of parameters g = (g1,...,gn) of P/R, define

T&f\’: P—R
as follows: Set Sy := P/gP. By [20], p. 370, F. 20 and E. 21 there is a trace map

Ty 9g— R. Define T;( by following the surjection P—Sg by 77°. By [20], p. 375,
Prop. F. 26, if g’ = (¢, ..., ¢},) is another such sequence in P with

= Zai]‘g;aij epP

then
X=X ons, (3.10.1)
where Ag, is multiplicationby det(a;;). Foray,...,a, > 0,setg®:=(g7",..., g2").

Huang in [10] Section 7 (cf. especially (7.1) and (7.2) (b) of loc.cit.) finds P-regular
sequence f = (fi,..., fn) in P suchthat for M € Ry, andanym € M,p € P

pdX,...dX,®@m
res p/r ol fan = 7/ (p)m (3.10.2)
1 PIIEECIE )
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This is seen by modifying slightly the arguments in [20], F. 22(b).
Let 7 € N be such that f" P := (f{,..., f7)P is contained in (t1,...,%,) P +
mp P (such an r exists since the radical of tP + mpP is fP + mpP). Let

f: = Za”t] + m; ((I,i]' € P, m; € mRP)
=1
One checks (by applying [20], p. 376, Prop. F. 27 to the base change R— R/mp)
that 7% ( P) differs from 77X (det(a;;)p) by an element in mp.
Let w = sdz...dzqd¢; ... d¢, and let s',7/, £ be pre-images of s,z,£ in Q.

Setw’ = ¢'dt;...dt,dz|...dz5dE)...dE) € ngj” According to [20], p. 254,

164ifw' = pdX,...dX,, Qv (peQ,ve QQ/A)then

os/r(w) =77 (p).

Now for any system of parameters y = (yi,...,yq) of R/A, we have
Ress/P [w@a] = def@;@a] s
L 9

_ [pexe [”?“]}
t :

_det(aij)de [U%y] :' '

- f‘r
Whence
w® o VR«
resp/AoResS/p[ y ]:Tf)f(det(aij)-p)[ y ],
VR «
- 2w [
_ [US/R(‘*’)]
y 9

as required.

3.11. REMARK. Let A— B be a smooth algebra of finite type, equidimensional of
dimension d; A excellent; Ass(A) = Min(A).Letp € Max(B)andq € pN A, and
lett = (t1,...,t4) be a system of parameters for B,/A,. Set R := A, § := B,.
In this situation Hiibl and Kunz define a residue map

Res pses: Hts( R)_’R
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(Cf. [15] Sect. 3, p. 76. Cf. also ibid., p. 64, (2.1)). Clearly, in view of 3.8(b) and
3.10(b) and the definition of Res 55, we have

Res pStS = I€S S/ALS-

THEOREM 3.12. [Local Duality]. Let f: A—S be a morphismin €,; N €y of
relative dimension d.

(a) For each M € Ay, the residue map res g/ 4z induces an isomorphism of -
modules

H! (Qd/A ® M)-—Hom¥(S, M),
whence we have an isomorphism of S-modules
Hom s(N, H (2%, ® M)) == Hom 4(N, M)
¢ — resSg400
forall N € Sy.

(b) If x = (x1,...,2q) is a system of parameters of S/ A, then for every finitely
generated S-module N, the S-homomorphism

Hom (N, Q% ,) — Hom 4(H5(N), A)
¢TS5/ xs © Hig(h)
is an isomorphism of S-modules.

Proof. For part (a) let (P, n, ) be a factorization of A—.S. From 3.2.6 and
[10] (7.3), the map H¢ (QS/A )—Hom ¢ (S, M) given by res g/4 is seen to be
an isomorphism. The remaining part of (a) is a trivial consequence of the natural
isomorphism Homg (N, Hom$ (S, M ))——Hom4(N, M) for N € Sg.

Note that (b) is well-known if S is a power series ring over A. We first prove (b)
under the assumption that A is an Artin local ring. Let z;,...,z4 € S be a regular
system of parameters for S/A. Set R := A[|Xy,..., X4|] (X1,..., X, analytically
independent). Define R— S by sending X to z;. Clearly R—S is finite. It is well-
known that it is flat (cf. for example [20], p. 310, B.27), and usmg [20] p. 314,
C.4, it is a global complete intersection. Let, as usual, o5/g: Q4 s/ A—>Q R/A be the
d th component of the trace map 3.9.1. By 3.10, fes’ S/A = res R/A © HmR(aS/R).
Using the fact that ﬁds /4 is isomorphic to Hompg(5, ﬁ% / 4) Via 05/ one sees that
the result is true in this case (cf. [21], p. 69, (7.5)).

Now we drop the assumption that A is Artinian. Let NV be a finitely generated
S-module and ¢: Hd5(N)— A an A-linear map. For p € N, let A(p) = A/m4P,
S(p) = S/maPS, N(p) = N/maPN and ¢(p) = ¢ @4 A/maP: Hig (N (p))—
A(p). By 3.7.1 and by local duality for S(p)/A(p) (A(p) being Artin) we have a
unique S(p)-linear map

( ) N(p)——>Q p)/A(p) ~— Qfé/A XA A(p)
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such that ¢(p) = Tes s(p)/a(p) 0 . ;fs(p) (¥(p)). One checks by the universal property

of (Qé(p)/A(p), res S(p)/A(p)) that the diagram

N(p) —2 . 8¢, @ A(p)

N(P+1)WQS/A®A(P+1)

commutes, where the vertical arrows are natural. Define ¥ using 3.1.1 via {¥(p)}.
Clearly (by definition of Tesg/4), ¢ = fess/4 o H d.(W¥). Uniqueness of the S-
map satisfying the above formula follows from the uniqueness of ¥(p) for each
p €N, a

3.12.1. REMARK. Let A be acomplete local ring and let A— R, R— P be in €.
Let S be a homomorphic image of P, with 5/A formally smooth, and the induced
map R— S surjective. Then by [10], p. 21, Section 5, P is a power series ring over
R. Using this it is not hard to show that

resP/R o RCSS/p = RCSS/R,
and

resp/r o Resg/p = Resg/g.

4. Pseudo-coefficient fields and residues

For the rest of the paper we will work over a fixed perfect field k.

Given a map k— 5 in €,;,, and a field L in S containing the image of k,
such that kg is finite over L — there is a way of constructing an injective hull of
the S-module kg, described for example by Hartshorne in [8], p. 63, Example 1.
Given two such fields, we describe in 4.6, a canonical isomorphism between the
two constructions. The isomorphism depends heavily on the theory of residues
developed below and in the last section. Moreover, this isomorphism agrees with
the one in [31] wherever both make sense (cf. 4.7).

4.1. DEFINITIONS, NOTATIONS AND REMARKS

(a) If A is a k-algebra such that the structural map k— A is in ¢, 7,4, then we write
A € ¢ (or, more often than not, simply A € €). ¢ with morphisms being
members of €, s, is a category.
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(b) If A isin €, and A is formally smooth over £, then we write A € ky,. In this

case we set H(A) = HnTA(QZL/T’) where m = dim A, and ¢ = tr.deg,k 4.

(c) Since k is perfect, if L € ¢ is a field, then L € ky,. In this case we define

q
wr = H(L) = \ QL
L

where ¢ = tr.deg; L.

(d) Let o: L— A be amorphismin €, with L being a field. We say o, is a coefficient
field (resp. pseudo-coefficient field, resp. quasi-coefficient field) if o, followed
by the natural surjection A—k 4 is an isomorphism (resp. a finite extension of
fields, resp. an étale extension of fields).

(e) For A € ¢, set

C4 = {o: L— Ao is a pseudo-coefficient field}

If the domain of o € (4 is not specified, then we write L, for the domain of
o, and w, forwy, .
(f) For A € ¢, and 0 € C 4, we define

K(c):=Homg(A,w,)

Note that K(o) is an injective hull of k4 over A (cf. [8], p. 63, Example 1).
Define

e, K(o)—w,

to be ‘evaluation at 1°.
(g) Let A € €, and 0 € C4. Define a functor G,: Ay—Mod4 by setting G, :=
Hom ,(_,w,). Then by 1.7.1, the pair (K(c), e, ) represents G,.

(h) Let S /. R be a finite map in €. Let 7: L— S be a pseudo-coefficient field and
seto = for € Cg. Since (K(7), e;) represents G, therefore there is a unique
S-map

75:K(0)—=K(7)
such that
e, 07, =é€,.
We claim that the map of R-modules
I';:K(oc)—Hom g(R,K(7))
induced by « is an isomorphism. This is seen by noting that the natural map
Homg(R,Hom:(S5,wr,)) — Hom$, (R,wr)
¢ (1= ¢(r)(1))

is an isomorphism.
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(i) In particular, if S — R above is surjective, then v is injective, since I'}, identifies
K (o) with the S-submodule of () annihilated by ker f.

4.2. RESIDUES FOR PSEUDO-COEFFICIENT FIELDS

LetS € ky,. Leto: L— S be a pseudo-coefficient field. Let (P, n, 7) be a factoriza-
tion of o. As in the proof of 3.4(c), one checks thatresp/y, ., oResS/ P, k: H(S)—
wy, is independent of the factorization (P, n, 7). Denote this map:

resy: H(S)—ws,. “4.2.1)

If x = (21,...,24) is a regular system of parameters for S, then R =
L[|zy,...,z4]](C S) is a power series ring over R and the algebra 5/ R is finite,
flat, and a global complete intersection. Let 7: L— R be the natural map. Let
g = tr.deg, ks and let p = d + ¢q. Then by 3.10 res, = res; o HiR(Us/R) where
os/R is the pth component of the map 3.9.1. Consequently res, is a special case of
the residue defined in [14] (1.1). Using this, one checks the following:

PROPOSITION 4.22. The pair (ﬁg e res,) represents the functor
Hom, (HZ (M), wr) of finitely generated S-modules M .

4.2.3. REMARK. Let f: R—S be in s, with R € ky,. Then identifying H(S)
with H;“S(ﬁgm ® H(R)) (n = rel.dim S/ R) via [10] p.19, 4.5 (ii), we can show,
as in 3.8 that for ¢ € CR, resfo, = res, oress/g g(r) (cf. also [14] Prop. 1.3 and
Cor. 1.4)).

PROPOSITION 4.2.4. Let S € kys. The unique S-linear map
8,: H(S)—K (o)

satisfying e, o 8, = res, is an isomorphism. In other words, the pair (H(5), res, )
represents the functor G, of 4.1(g).

Proof. 1t is well-known that H(.S) is an injective hull of ks with respect to .,
and so is K (o). Hence there is a (non-canonical) isomorphism

VYo: Ko——H(S).

Letd,: H ~(S )—wr, be the map corresponding to e, under . Then by 4.2.2 there is

amap h: Qg/kéﬁg/k such thatres, o H2 (k) = 6,. Applying 1.7.2to J = H(S),
g =r1€S,,7 = His(h) o 1, we get the proposition. a

4.3. DEFINITION. Let S-1>Rbea surjective ring homomorphism in ¢, and let
o€ Cp Wesay T € Cgisaliftof o,(or T lifts o to S)if for = 0.
We need the following well known (and easy) fact:
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PROPOSITION 4.4. Let S—R be a surjective ring homomorphism in €. Then
every o € Cr hasaliftin Cs.

4.4.1. REMARKS. Let S —f—>R, o € Cp, 7 € Cg be as in the Proposition, and let
S e k]'s.

(a) By 4.2.2, we have a unique S-map
¢g: K(0)=H(5),
such that res; o ¢, = e,.If 6.: H(.S)—K(7) is the isomorphism in 4.2.2 then
clearly
b0 ¢y =1,
where 7] is as in 4.1(h).
(b) Let I = ker(f) and define an S-submodule of H(.5) thus:

H(S)(f)={v e H(S)|Iv=0}.
In view of (a) above, and 4.1(i), ¢7: K(o)— H(.9) is injective and takes values
in H(S)(f).Let

@5 K(o)—H(S)(f),
denote the resulting isomorphism.

(c) Let S’ I, 5 be another surjective ring homomorphismin ¢, with S” € ky,. Let
7' € Cg be alift of 7 € Cg. Then,

¢; = RCSS/S/ ¢} ¢;

THEOREM 4.5. Let S < Rbea surjective ring homomorphismin €, with S € k.
Let 1, 7 € Cgs be two lifts of a pseudo-coefficient field c: L— R. Then

¢7‘1 — ¢’rz .

Proof. Let T be any lift of o. We have to show that ¢ is independent of 7. Let

7, j be the canonical inclusions of £ in .S and L respectively. Then ¢, j are formally
smooth, 7, o are residually finite and 75 = ¢ and fT = 0.

Consider the following three pseudo-functors defined in [10] (our notations
differ from ibid.):

(i) (-)» on €, defined in (4.4) of ibid. Here, for T € &,, T, is the category of
T-modules with 0-dimensional support, and for a morphism T-4T' in ¢, f»
g, = Hom%(T', —).

(i) (-)y on €y, defined in (4.5) of ibid. For T € €y, Ty is the category of T'-
modules with 0-dimensional support. For a morphism 7—-7" in ¢ fs, Gy =
He (ng, /7 T —), where d is the relative dimension of 7”/T and t is

mops

defined by t — d = tr.deg;, k1.
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(iii) (-)« on €, s, defined in Section 6 of ibid.

On ¢,f,(-), and (-)« are isomorphic by Section7 of [10]. On €, ()3 and
(-)« are isomorphic by construction. Identifying H(5)(f) with Hom s(R, H(.5)),
we see that (¢7)~! is the composition (with all arrows arising from the natural
isomorphisms between the various pseudo-functors)

fbiﬂk‘—>fbi*k—>fbT*j*k_’be*jﬂk_’beijk_)Ubjﬁk'

To show that this composition is independent of 7 it is enough to show that
the following diagram commutes (for the composition along the western border
followed by the composition along the southern border does not involve 7).

fotg —— fotx

fety [oTede — foTudy — fooliy

f*i* —_— f*T*j* - f*Tbj* - bebj*

(fi)« fovis — FoTodi

(0])s—> OuJu — OpJsx — TpJ4

All arrows here are isomorphisms, and one checks easily that each subrectangle
commutes. g

4.5.1. REMARK. Let f:5— R be a map in € which is surjective, with S € k.
Then for o € CR, the above theorem tells us that we have a unique map

¢1:K(o)—H(S),

such that for every 7 € Cg which lifts o, res, o ¢, equals e,. ¢ maps K(o)
isomorphically onto H(.5)( f), and hence we have an isomorphism

®7: K(0)H(S)(f),
induced by ¢.
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4.6. DEFINITION. Let R € ¢, and 0,0’ € Cg. Define an isomorphism lIIZ':
K(o)—=K(c') as follows: Pick a surjective map f: S—R in € with S € ky,
(such a map always exists). By 4.4 we can find lifts 7, 7’ € Cs of o and ¢’ respec-
tively. With ®/ and &7, as in 4.5.1 we define:

v = (@) o 81 K(0) K (). (4.6.1)

A priori the isomorphism depends on the surjective map f: S— R, but we will
show that it is independent of this map. Let f’: S’— R be another map in € which
is surjective, with S’ € k;,. By 3.3.2 and 3.3.3 we may assume that there is a sur-
jective k-algebra homomorphism p: S’— S such that f' = fop.Lete, e € Csr be
lifts of 7 and 7' respectively. Now Res g/ s/: H(S)—H (.S") maps H () isomorphi-
cally onto the S’-submodule H (5’)(p), and hence maps H (5)( f) isomorphically
onto H(S")(f'). Let v: H(S)(f)—H(S")(f') be the induced isomorphism. By
44.1(c), ®' = yo ®f and &/, = y 0 &7, It follows that ¥’ = (&)~ o BJ'.
Thus the isomorphism \Ifg' is independent of all choices.

From the definitions it is immediate that for three pseudo-coefficient fields,
o,0',0"” € CR, we have

Vo =0 oY, (4.6.2)

Note that if R’ € ¢, and if we have a surjective map g: R*— R in ¢, and 7,7’ €
C'r are lifts of 0,0’ € Cg, then
U7 ol =47 007, (4.6.3)

where v and 'y;,' are as in 4.1(h).

THEOREM 4.7. Let X be reduced algebraic k-scheme and v € X a point. Let
R = Ox andlet 0,0’ € Cg. Let ®,,: K(0)—K(0’) be the R-isomorphism in
[311, p. 96, 4.3.13. Then

!
_ o
T L

Proof. If R € kj, then this is a consequence of [29] 0.2.11 and [14] Theorem
2.2. Otherwise, by replacing X by a smaller open neighbourhood of « if necessary,
we may assume that there is a closed immersion i: X —Y, with Y a smooth
variety. Let y = ¢(z), and R' = Oy,;. We have a natural surjection g: R’ —R
(corresponding to 7). Let 7, 7/ € Crs be lifts of o and ¢’ respectively. Lemma4.4.8
of [31] and the definition of ®, ,/ gives:

B, 09l =70 0By, 4.7.1)

Since &, . = \IJZ' (R being in k) and since v, fy;,' are injective maps, therefore
the proposition follows by comparing the above equation with 4.6.3. a
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We end this section with a change of rings theorem for 4.6.1 which contains as
a special case 4.6.3.

THEOREM 4.8. Let f: S— R be a finite map in €. Let 0,0’ € Cr and let 7,7’ €
C's be lifts of o and o'. Then

U oyl =47 007 .
Proof. Pick a surjective ring homomorphism $’—2+5 in € with " € ky,.

Let (f', R',g’) be a factorization of f o g: S'— R. One checks (using 4.2.3) that
¢% 075 = Resgiygio ¢g’ and ¢7, o fy;f = Respr/g1 0 d)f,’,. It follows that we have

B9 097 0(99)" = 8% 0q7s 0 (8%)7".
The theorem follows. a

5. Trace structures

5.1. DEFINITION A trace-structure on € consists of:

(i) An injective hull K(R) of the R-module R/mp, for each R € €.
(ii) For each R € ¢ and each o € CR, a o-linear map t,: K(R)—w(o) such that
for R € ¢:
(a) The pair (K(R), t,) represents the functor G, for each o € Cp.
(b) If R is formally smooth over k, there exists an R-map (unique by (a)
above) ¢r: H(R)—K(R) such that t, o ¢p = res, (cf. 4.2.1) for every
o € CRr. (Note: Such a ¢p, is necessarily an isomorphism by 4.2.4).
(¢) If f: R— .S is amorphism in € such that the residue field extension is finite,
there exists an R-map (unique by (a) above): 7;: K(5)—K(R) such that
ty 0Ty = tfoo forevery o € Cp.

5.2. REMARKS.

(i) We stress that ¢r and 74 in (b) and (c) above are required to be independent
of o € Cp.

(ii) If f: R— S is as in (c) above, then one checks, rather easily, that the map 7
induces an S-isomorphism T's: K(5)——Hom%(S, K(R)), where the right side
is the S-module of continuous R-maps from 5 to K( R)), such that T's followed
by ‘evaluation at 1’ gives 74. Note that if f is finite then Hom% (5, K(R)) =
Hompg(S5,K(R)).

(iii) Let f: R— S be a morphism in ¢,y N ¢y, of relative dimension d, and assume
R (and hence 5) is formally smooth over k. Using the transitivity of residues
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(cf. 4.2.3) and the identification HiS(QdS/R ® H(R))with H(.5), we see that
the diagram:

Hy o (V5yp ®r H(R)) S5~ H(S) —— K(S)

S

resS/R Tf

H(R) = K(R)

commutes. Proposition 5.5 below generalizes this to the case where R is
not necessarily formally smooth over &, and f: R—5 induces a finite field
extension of residue fields.

(iv) Let R € € be reduced and equidimensional. Let wp be the module of regular
differentials over k and H(R) = H3™R(wp). Then as in [14], (1.1), we have
maps res,: H(R)—w(o) for each o € Cp, such that (wg,res,) represents
the functor Hom, ( HI™*( M), w(c)) of finitely generated R-modules M, and
hence amap ¢%: H(R)—K(R)suchthatt, o ¢, = res,. It turns out that % =
¢p, for o, 7 € C'r. However, we will only prove this under the assumption that
R is the completion of a local ring at a point of a reduced equidimensional
algebraic k-scheme X (cf. 9.3). Note that if R is formally smooth over &, then
this is part of the definition of a trace structure.

(v) Let RL.5 % Thbea sequence of morphisms in ¢, such that the induced map
on residue fields is finite for both f and ¢ (and hence g o f). Then

Tgof = Tf (0] Tg-

(vi) Let f: R— 5 be a morphism in € such that the residue field extension is finite.
Then for O-dimensional S-modules M, the natural S-map

Homgs(M, K(S))—Homp(M,K(R))

(arising from 74: K(.5)—K(R)) is an isomorphism, i.e., (K (R), 7¢) represents
the functor Hompg(M, K(R)) of O-dimensional S-modules M.

PROPOSITION 5.3. Trace structures exist and are unique up to unique isomor-
phism, i.e., if {(K(R),{t;})} and {(K'(R),{t..})} are two trace structures, then
there exists a unique family of isomorphisms

pr:K(R)5K'(R), Rec

such that t, o ur = t, for every o € Ch.

Proof. We first prove uniqueness. Fix R € €. For each o € CR, clearly there is
an unique isomorphism

ph: K(R)—K'(R)
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such that ¢, o u% = t,. We are done if we show that u, = p% for o,7 €
Cr. First assume R is formally smooth over k, and ¢r: H(R)—K(R) and
¢r: H(R)—-K'(R) the isomorphism arising from 5.1(b). Then for every o € Cr,
it is easy to check that u% = ¢ o ¢5'. This proves the assertion in case R
is formally smooth over k. For general R € €, let f: S—R be a surjective
map in ¢ with S formally smooth over k. Let 0,7 € CR and let o*,7* € Cg
be some lifts of o and 7 respectively. Let Ty: K(R)—Homg(R,K(S)) and
t: K'(R)-">Homg(R,K'(S)) be the isomorphisms in 5.2(ii). Let ugr: K(R)—
K(R') be given by T’JT] opsoTy.Clearlyt) oup = t, and t/ opp = t,, and hence
UR = uR = p as required. This proves the uniqueness of trace structures.
For R € €, consider the collection {K(0)},ecp. The maps ¥’ of 4.6.1 make
{K(0)} into a direct system. Set

K(R) := 117"1 K(o).

Then we have unique isomorphisms i,: K(o)— K(R),one foreach o € Cg, such
that \I'g' = u;,l o ly. Sett, = ey 0 u;‘ (where, as usual, e, denotes ‘evaluation
at 17).

For f: S—R a finite map, 0 € Cg, and 7 € Cs alift of o, define 7;: K(R)—
K(S) by the formula

v = o] o iy

(cf. 4. l(h) for definition of ). Theorem 4.8 says that 7 is well-defined. Clearly
t; o Ty = t,. This proves the existence of a trace when f is finite.

Now suppose f:S—Risamorphisminind,. Let 7: A— S be asurjective map
in ¢ with A formally smooth over k. The map f o 7 has a factorization (B, 7, ¥),
and hence we have a commutative diagram (with P = B ®4 S and g o ' = ).

A - S
Since all horizontal arrows are surjective, traces for them are defined.
Further K(A) can be identified with H[" (QZ‘;Z) (where n = dim A and
q = tr.deg,(A/my) and K(B) can be identified with H”+d(Q”+d+q) =

(Q B/a® K(A)). Define an A-linear map 74o.: K(R)—K(A) by the formula
Tfoﬂ- = resp/4 © Tp 0 Tg. For o € Cy, the ‘transitivity of residues’ formula 4.2.3
gives the relation ¢, o Tfor = tforos, Whence Ty, depends only on the algebra
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structure of A— R. Using 3.7, 3.7.1 and 3.7.2 we see that 7., takes values in
the image of 7. Since 7, is injective, this gives an S-linear map 77: K(R)—K(.5).
From the construction of ¢, the relation ¢, o 7¢ = t4,, is immediate foro € Cg. It
follows that 7 is independent of the surjective map m: A— 5. Thus trace structures
exist. O

5.4. REMARKS

(a) Observe that if up is as in the proposition, and R is formally smooth over £,
then g o ¢r = ¢ where ¢pp: H(R)——K(R) and ¢z: H(R)—K'(R) are as
in 5.1(b).

(b) If f: S—Risin€, s, thenusors = 7-} o uR, where 75 and T} are as in 5.1(c).

PROPOSITION 5.5. Let f: R—S be a formally smooth morphism of relative

dimension n in C, s. Then there exists a unique isomorphism

v HY (e p ® K(R)—=K(S)

such that Ty o 1y = res g/g.
Proof. Follows from 5.2(vi) and 3.12(a). O

6. Construction of the residue complex

Fix a trace structure {(K(R), {t,})}.

6.1. CONVENTIONS

(a) For X an algebraic k-scheme, z a pointin X, and R = 0 X,z We write K(z)
for K(R), C;, for Cr, ¢, for g etc. If & is a smooth point, we write H (z) for
H(R).

(b) If f: U—V is a map of algebraic k-schemes, then for v € U which is closed
in the fibre f~! f(u), the map K(u)—K(f(u)) of 5.1(c) will be denoted 85 ,,.

6.2. CONSTRUCTION

Let X be a connected algebraic k-scheme of dimensionn andlet Ay = A: X —7Z
be the codimension function A(z) = —dim{z}~ for € X. Let K% be the
injective O x-module given by

K% = @ K(z).

A(z)=p

We intend to define a coboundary map ¢ on the graded module @, K’ so
that (K%, §) becomes a residual complex.

First assume X is smooth. Then by property (b) of a trace structure, we have a
canonical isomorphism ¢,.: H(z)—K(z) for each z € X. Let E* be the Cousin
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complex E*(Q%/,)[n]. Then E* is a residual complex, and for z € X, E(z) =
H (z). Further, the codimension function associated to E* is precisely A x. Thus
for p € Z, we have an isomorphism

= > g EPKY.
A(z)=p

Define §7: K% — K% in the obvious way, viz., §* = ¢P*! 0 6%, o (¢P)~!, where
654 is the coboundary on E*. We thus get a residual complex (K%, §) isomorphic
to £'*, when X is smooth.

We now construct the coboundary map é on €p,¢, K% for general X.

Let 21 — z, be an immediate specialization in X. We define an Ox ;,-homo-
morphism 6(z 1, z2): K(z1)—K(z2) as follows:

Case 1. Suppose we have a closed immersion g: X —Y with Y a smooth -
variety. Let K} be the complex just constructed. Let J* = gbIC{/, where, as
usual, if F* is an Oy -injective complex, then ¢g° F* is the Ox-injective complex
corresponding to the complex of g.Ox-modules Homy (¢.Ox, Ky). J* is clearly
a residual complex. R R

Forz € X,sety = g(z), R = Ox , and § = Oy,. From the definition of J°*,
one has a canonical identification of J(z) with Homg(R, K(y)). On the other hand,
0,.-: K(2)—K(y) induces an isomorphism 0 ,: K(7)—Homg(R, K(y)) = J(y)
(cf. 5.2(i1)). The differential on J* givesus amap d(zy, z;): J(z1)—J(z2), whence
(via Oy ,, and Oy ,) amap §7(z1, z2): K(z1)—=K(z2).

Next we prove thatif h: X — Z is another closed immersion with Z smooth, then
69(zy, x2) = 6"(21, 22). We may assume (by replacing Z by Y X Z if necessary)
that there is a smooth map 7:Y—Z suchthat rog = h. f W = XxzY
and p: W—X, h/: W—Y the resulting projection maps, we have a commutative
diagram (with the square being cartesian)

X : W ~Y
o » . (6.2.1)
X - Z

with A’ o1 = g and po¢ = identity. It is immediate that ¢: X —W is a closed immer-
sion, and that the ideal sheaf of X is generated (locally) by a regular sequence.
For the immediate specialization x| +— z;, let wy — wj, y1 — 32 and z1 — 2,
be the corresponding immediate specializations in W,Y and Z respectively. Let
S1,...,54 € Ow,, generate that kernel of the surjection Ow,y, —Ox »,. We
may assume that sj,...,84 is a regular system of parameters for the algebra
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@W,wz / O X,z,- Lifting sq,...,54 to Oy, (and denoting the lifted elements also
by si,...,84) we note that sq,...,sq are a system of parameters for Oy, v/ 0 Z,29e
Fix j € {1 2},and let Q; = (’)Ww ,R; = (’)Xxj S; = (’)ny and T; = (’)ZZ]
One sees that Q; = R;[|s1,.. sdl] and S; =15 [|$1, , 8dl]s (w1th s being
analytically independent in both cases) and the maps R]'—>Q j» T;—5; (induced
by p: W—X and 7: Y — Z), are the natural inclusions of coefficient rings in power
series rings.

Let m = dim Z, so that dimY = m + d. Let ¢: K(21)—H(z1) be the map
¢;11 o Hh,zl- Let 6(y1, yz): H(yl)HH(yz) and 6(21,22)' H(Z])-*H(Zz) be the
maps arising from the Cousin complexes E(Q’}’}/",'cd[m + d]) and E(QZ/k[m]).
Let p;: H(z;)—H(y;) be the map

N

where t is a system of parameters for Oz,. . Using the fact that

ds ® w
15 Q,/R, t - [t:l’

S

5.2 (iii) and (v), we are reduced to showing the following:
For £ € K(z1);

6(y1,y2) o p1 0 P(€) = p2 0 6(21, 22) 0 P(&).

Let (&) = [ w/tot ] where w € Q’f;/k — we are using the notations in 1.1. Then,
using 1.1.1, we have

w/to

dsy A ---Ndsg @ w/ty
t1y...5%

S1y+++38dsb1y.-us

6(y1,92) o [ ] = 6(y1,%2) [

:(_1)n+d [db‘]/\-"/\d8d®w/t0:|

1058155 Sdyl1y.en sty

Sly+ees8d500,81y...,1n

W
=(=1)"
( ),u2|:t0’t17---’t'r]

w
= p2 0 6(z1, 22) [t : ]
1yeeesrlr

:(_l)n[dsl/\.../\dsd@)wt ] 622)
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as required. Thus §9(zy,z,) = 6*(z1,2,). Call the common value é(z 1, 25). It is

now immediate that if 67 = 211(’-’9;2 8(x1,22): Ko — K5 then 6711 0 67 = 0 s0
A(zy)=p

that we have a differential é making K% a residual complex.

REMARK. One checks, easily, that for U open in X, K, = K% | U. In fact, if
g: X—=Y is a closed immersion with Y smooth, then there exists an open sub-
scheme V of Y such that g~!(V) = U, and hence there is a closed immersion
gu: U—V induced by g. Since E'(Q;‘,/k[r]) |V = E'(Q’{,/k[r]) where 7 = dimY’,
the assertion follows.

Case 2. Now let X be an arbitrary algebraic k-scheme. Pick an open neigh-
bourhood U of z, in X which admits a closed immersion into a smooth vari-
ety, so that the complex K7, can be defined. Define é6(z1,22): K(z1)—K(22)
as the map induced by the differential in K. By the remark above, §(z;,z7)
does not depend on the open neighbourhood U of z;. One checks that if 67 =

EZI("’";Z g(xl,wz):lC",’(—»ICg(H, then 671! 0 67 = 0 for all p € Z. The resulting
zy)=p
complex is clearly residual (since it is so locally).

6.3. REMARK
(i) Asbefore, for U an open subscheme of X, K% | U = Kp;. In fact, the collection

K* = {K% | X is an algebraic k-scheme} forms a Zariski sheaf of complexes,
i.e., K* is a residual O-complex in the sense of [29]. For an open immersion
g: U—V, the restriction isomorphism S,: g*K{, — Ky, is given by B,(u) =
0, forueU.

(ii) Let f: X —Y be aclosed immersion. Then the maps 8¢ .: K(z)—K(f(z)) (for
x € X) give a map (of complexes) §: f.K%— K3 such that the resulting map
©;: K% — f* Ky is an isomorphism of complexes. To see this we reduce to the
case where Y admits a closed immersion ¢: Y — Z where Z is smooth, and use
the identity 6, ¢(;) 0 05, = by5 foreach z € X (cf. 5.2 (v)). Again details
are left to the reader.

7. Trace in the absolute case

Let € X be a closed point, and cr,;:k—>(’A)X,z, the natural map. Set 6, =
to,  K(z)—k.

PROPOSITION 7.1. For X proper, the map
ST 60,0600 T(X, K3~k
z closed
is the zero map, and hence
Ox = Z 0,:T(X,K%)—k
z closed

is a map of complexes.
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Proof. First assume X is smooth of dimension n. Identifying K% with
Ee (%, x[1]), the proposition follows from 2.2.1.

Next assume there is a closed immersion ¢: X —Y where Y is smooth and
proper. As in 6.3 (ii) we have a map of complexes 6;: i, K% —K{,, whence a map
of complexes 8, o I'(Y, 6;): I'( X, K% )—k. Since () 0 0; » = 6., the proposition
follows in this case also.

Finally, let X be proper, and ¢ € X be such that dim{z}~ = 1 (ie., A(z) =
—1). We have to show that ¥, ,,8, o §(z,y) = 0. Let Z, be the ideal sheaf giving
the reduced structure on {2}, and for n € N, let Z,, be the 1-dimensional algebraic
k-scheme defined by 7. Let ¢,,: Z,— X be the natural closed immersion, and z,,
the unique pre-image of = under g,. For ¥ an immediate specialization of X, let
Yn € Zp be the closed point corresponding to y. By [6] §22, §25, we may assume
that Z,, is projective, whence ¥,,.6,, o 6(z,,yn) = 0 by our previous case. The
proposition follows by taking direct limits as n—o0. a

From now on, for X proper, let x: I'( X, K% )—k be the k-linear map given by
the last proposition. Note that for = a closed point of X, (K(z), 6,) represents the
functor Homy (M, k) of Oy ;-modules of 0-dimensional support; in other words,
(K%, 0x) is a pointwise residue pair [28], p. 114. By 1.7 we see that (K%, 0x) is
a residue pair. More precisely, with {p} = Spec k, we have:

THEOREM 7.2. The map 0x:I'(X, K% )—k induces an isomorphism.
R Hom¥ (F*,K%)—R Homy,)(RT(X, F*), k)
in D{p} for every F* € D} (X).

8. Trace for proper morphisms

Let f: X —Y be a morphism of algebraic k-schemes. For each # € X which is
closed in the fibre f~!f(z), we have a map 6y .: K(z)—K(f(z)) as in 6.1(b).
We extend the definition of §; . to points # € X which are not closed in their
fibre by setting 6 ,: K(z)—K(f(z)) equal to zero in this case. One checks that
0r: LK% —Ky given by 0y = Y cx0y, is a map of graded Oy-modules. The
main result of this section is:

PROPOSITION 8.1. If f is proper, then 8¢ f. K% — K is a map of complexes.

The proof in carried out in 8.4. We need some preliminary material.

8.2. CURVES OVER ARTIN LOCAL RINGS

Let S = SpecA, A € ¢ an Artin local k-algebra. Let 7: P%— .S be the structural
map. Let [ = K(A). Define

Ko o= E2a (22 ® I)n]
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Let
Hn»g: I‘(I[Dg, IC[;g)—J (8.2.1)

be the map of complexes defined in 2.2.1. For a proper irreducible S-scheme
f:C—5S of dimension 1, there is a closed immersion of S-schemes i: C' =P = P
for some n € N. Indeed an ample invertible sheaf on the closed fibre over S
can be lifted to an invertible sheaf on C' via [9], p. 224, (4.6), and this sheafAmust
necessarily be ample on C' by ibid., p.232,(5.7)(d). Forc € C'if R(c) := K(Oc¢,),
x = i(c), then we have a natural map

0 .: R(c)—Ke(z) (8.2.2)

given by our trace structure. In fact, using the fact that R(c)—
Hom oy (Oc,c, Ke(z)), we can string together the R(c) (as ¢ € C varies) to
get a residual complex R ¢, such that

02' = Z 0—27—6 z{R&—»ICI;
ceC

is a map of complexes.
In this situation we have the following Proposition, whose easy (though tedious)
proof we leave to the reader (cf. Sect. 6 for the techniques involved).

PROPOSITION 8.2.3. With notations as above, suppose g: X —Y is a proper
map of relative dimension one of algebraic k-schemes, and suppose A = Oy,
forsomey € Y, C = Sxy X, and f: C— S the projection. Let h: S—Y be the
natural map and h': C — X the projection on to X . In this situation

= WK (~d)
where d = dimY, and ‘{—d}’ denotes translation to the right by d units without

changing the signs of the coboundary maps.

One immediate consequence is the following Lemma, in which all schemes
mentioned are algebraic k-schemes.

LEMMA 8.3. Let g: V—W be proper, surjective, with V irreducible. Let v € V
be the generic point of V and let w = g(v). Suppose A(v) = A(w) — 1 then the
composition

K(v) 220, @/c ) ol k() 83.1)

is zero, where the direct sum is over v' € g~ (w) with v v'.
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Proof. Let A = Ow,,, S = SpecA and h: S—W the natural map. Let C' =
SxwV, f:C—S§and h': C—V the two projections. C'is irreducible of dimension
one. For f:C'—5 we use the notations in 8.2. By Proposition 8.2.3 the complex
I'(C,RY) is precisely

0—K (v) 2 Ay K (1) =0

and the map X6, is induced by the map of complexes fpn 0 6;: I'(C, Rg)—1 =
K(w). The Lemma follows.

8.4. Proof of Proposition 8.1.

Case 1.If f isaclosed immersion, then we have already seen that the proposition
is true [cf. 6.3(ii)].

Let Y’ be the scheme theoretic image of f, and X LYY the resulting
factorization of f. One checks that §; = 6, o i,0;. By case 1, 6; is a map of
complexes, and hence we are reduced to showing that 6/ is a map of complexes.

So we may assume that f: X —Y as in the proposition is surjective.

Case 2. Let Y be smooth of dimension n, and f smooth of relative dimension
d. We identify Ky with E*(Q},[n]) and K% with E*(Q%{[n + d]). Then we
have a map

/f R0,

as in [16], (4.2) (there the map [ ¢ is denoted / )((S/p;c k)). Combining this with

Proposition2.1 we get a morphism of complexes

fopr @+ d) 2 Bt fg)) 2 B (0g ).
The definition of p; along with [23], Proposition (4.2.2) and 5.2 (iv) gives the result
in this case.
Case 3. Suppose f: X —Y is finite and surjective. First, assume Y is projective,
(so that X is also projective). Let g: Y —P"™ and h: X —P™ be closed immersions.
Set Z = P™x P™. Then we have a commutative diagram

X 7 %% g’ VA
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with p: Z—P" the canonical projection, the square cartesian, and g’ o 7 = h. We
already know that 6;, 6., 6, and 6, are morphisms of complexes. Now 6; =
6, o ¢.6;, and hence it is enough to prove that 6, is a map of complexes. Note
that 6, o g.8, = 6, o p.f,, and the right side is a map of complexes. Since
07: g.K{—Kgn is an inclusion and g is an affine map, it follows that 6, is a map
of complexes, and hence so is 6y in this case. Now assume Y is quasi-projective
instead of projective. Let j:Y —Y be a projective compactification of Y. By
Zariski’s Main Theorem we can find a cartesian square

-/

X J X
f 7
Y i 1%

with the horizontal arrows being open immersions, and with f finite. It is easy to
see that 6y = 770, and hence 6 is a map of complexes.

Now let f: X —Y be an arbitrary finite surjective map. Since ¥ can be covered
locally by quasi-projectives, and since the question is local, therefore, by the above
arguments, 6 is a map of complexes.

Case 4. We now prove the Proposition for algeneral propermap f: X —Y . LetY’

be the scheme theoretic image of f, and X Ly LY the resulting factorization
of f. One checks that §; = 6; o 1.6. By case 1, §; is a map of complexes, and
hence we are reduced to showing that 64/ is a map of complexes.

So we will assume, without loss of generality, that f: X —Y as in the proposition
is surjective. Let z € X,y = f(z),y' € Y, A = {2’ € f~1(y)]|z—2'}. We
have to show that

> Opa0 > 6(x,2") =6y, ) 0ba (8.4.1)

z'eA z'eA

where 6(y, y') = 0if ¥ is not an immediate specialization of y. We do this in two
stages.

First assume z € X is closed in its fibre. If 4’ is not an immediate specialization
of y, then by reasons of codimension (cf. [7], p. 333, Proposition (3.4)), none of
the 2’ € A are closed in their fibres and so 8.4.1 trivially holds. So assume y — y'.
Then by loc. cit., all 2’ € A are closed in their fibre. Let p C Ox be the ideal sheaf
of {z}~. Let Z,, be the closed subscheme of X given by p" and i,,: Z,,— X the
inclusion. Let g,,: Z, —Y be the composition f o¢,. By [5], 4.4.11, there is an open
neighbourhood U of y’ such that the restriction of f to g !(U) is a finite morphism
into U. A little thought shows that U is independent of n. By replacing Y by U
if necessary, we may assume that g,,: Z,—Y is finite. Let z,, € Z, be the point
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corresponding to z € X, and A, = {z!, € g;'(¢")| x— 2.} Since g,,: Z,—Y
is finite, the previous cases give

Z 09"1I£z ° Z 6(:1:7“:17;1) = 5(y7 y/) o ogn"z‘"'

8.4.1 follows by passing to the direct limit.
Now suppose ¢ € X is not closed in its fibre. We are reduced to showing:

> Osu0 ) b6(z,2")=0. (8.4.2)

€A z'€EAN

If y' # y, thennoz’ € Aisclosed in f~!(y’) (apply [7], p. 333, (3.4)), and hence
8.4.2 holds. So assume 3’ = y. If A(z) # A(y) — 1, then again by loc.cit. — no
@’ € A is closed in its fibre, and hence 8.4.2 holds. So we are reduced to the case
where ¥’ = y and A(z) = A(y) — 1. Let Z C Oyx be the ideal of {z}~ (with
reduced structure). Let V), be the closed subscheme of X defined by 7". We have
a commutative diagram

vV, —n X
gn f
w,, —=- Y

where W, is the scheme theoretic image of V,, in Y, and ,,, j,, ¢, are the induced
maps. Since A(z) = A(y) — 1, the map g,: V,,— W, satisfies the hypothesis of
Lemma8.3. If v, € V,, is its generic point, w,, = g,(vy), then 8.3 gives

Zegmu/ o Zé(vn,v') =0

where the sum is over v’ € g;-!(w,,), with v, — v'. Passing to the direct limit (as
n—o00), we get 8.4.2. O

8.5. REMARKS
1. If Y is Spec k in the Proposition, then identifying X (k) with £ in the obvious
way (i.e., via t, where o: k—k is the identity map), we have ; = 0.
2. Let XLV 2. Z bea pair of proper morphisms. Then 6, o g.0; = 6,;. In
particular, if Y is proper over k, then 6y o I'(Y,6;) = 0x.

For f: X—Y a proper map of algebraic schemes, let (f*, [ f) be as in [30],
Theorem 1. This pair is unique up to unique isomorphism. Clearly if Y = Spec &,
then we can identify ( f'k, [ 1 k) with the pair (QK%, Q6x ) where () denotes both
localization functors A (X )—D(X) and A'(Y)—D(Y). This is the content of
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Theorem 7.2. This has the following generalization (we are identifying QK% with
K%, @Ky with £} R f,L% with f,K%, and Q0 with ;).

THEOREM 8.6. Let f: X —Y be a proper morphism of algebraic k-schemes. The
pair (f'KY,, J; KY) is isomorphic to the pair (K%, 05).

Proof. If Y is proper, the theorem follows from the identity fy o I'(Y, 0;) = 0x
and the universal properties of §x and 6y . In general, one can compactify the map
f: X—Y,ie. get a cartesian square:

X - X
f 7
Y ] v

with X, Y proper over k and i, j open immersions (cf. [21], p. 50). Since 6 = 7705,
the theorem follows from [30], Theorem 2. O

8.7. REMARK. From the construction of #; for a proper map f:V —W of
algebraic k-schemes, it is clear that (K*, {#v }) gives a dualizing structure on the
O-module K* (defined on the Zariski site on the category of algebraic k-schemes)
(cf. 0.1 in the Introduction).

9. Connections with Yekutieli’s complex

In this section we show that for X equidimensional and reduced, K% is essentially
the complex constructed by Yekutieli in [31] (cf. 9.2 below). We will work over
yred _ the category of reduced, equidimensional, algebraic k-schemes and we point
out that the results of [29] are valid in this category (cf. Remark 0.2.12 of ibid.)>.
We deduce a relationship between regular differential forms of the top degree
and K%, analogous to Theorem 0.2.2 of [29] (Theorem 9.3 below). We assume
familiarity with the language of O-modules as laid out in [21], pp. 28-30.

By Remark 6.3, we see that {K%:X € V™} is a Zariski sheaf on V™I,
We denote this Zariski sheaf K°®. Moreover, one checks that the data (K*, {fx},
{7vx},{0;}) gives a residue complex on V™4 (in the sense of [29] (1.4)), where
vx, for X smooth, is defined as follows: If n = dim X, we identify K% with
E*(Q% /k[n]) (via ¢, * € X), whence we have a natural quasi-isomorphism

2% []—= K% . We denote this quasi-isomorphism by vx.

9.1. REMARK. If (C*, {(=1)%™XTrx},{Cx},{Tr;}) is the Yekutieli residue
complexon V™4, i.e. the residue complex of [29], Theorem 0.2.2 , then for X € Ve,

> However in the definition of a canonical structure in ibid.,1.3, care must be taken to identify
6 for all finite dominant maps (not just generically étale ones). This is done by using the trace in
[201§16. The generalization is routine and straightforward.
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and z € X, we can identify K(z) with C(z). This is an obvious consequence of
4.7 and the definition of K(z). Thus K% = C% for p € Z.

By [29], (1.2.6), (1.3.4) and (1.4.3) we have a unique isomorphism of complexes
of @-modules

A K =Ct

which preserves the dualizing and canonical structures of K*® and C°®. The main
theorem of this section is

THEOREM 9.2. For X € V™, the isomorphism
Ax: K& —Cx%

satisfies
N = (~1pam) 1,

for each p € Z, where 1cr_is the identity map on K% =C%.

Proof. If X = P, the projective space of dimension d over k, the theorem
follows from [29], (0.2.11) .

It is enough to prove the proposition for X projective, for then it would be true
for X quasi-projective, and hence for all X (by finding an open cover by quasi-
projectives). Let f: X —P¢ be a noether normalization (d = dim X ') comparing the
definitions of 6 in the beginning of Section 8 with the definitions of Try in [31],
4.4.11(a), we see that forp € 7, 6% = Trf(. On the other hand the diagram

A
P L0k

f K%
9f Tl‘f

Apd
e

commutes. This implies that for ¢ € X, with dim{z} = —p, and y = f(z), the
diagram of B = Opa ,-modules

K(z) = K(a)
0]',:): ef,z
—1)pd
K(y) 25 K(y)
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commutes. The assertion follows from the fact that, with § = O X,z» the natural
map

Homg(K(z), K(z))—Hompg(K(z),K(y))

given by 6 ., is an isomorphism.

Since K * has a canonical structure, the O-modulew = H~%™(K*)is acanonical
O-module in the sense of [21] pp. 32-33 (where dim is the ‘dimension sheaf’ on
yredy For X € Vred if we identify wx with a subsheaf of Q‘,’c'('}))( /), Via the map
4 xsm: Q4IMX —K% (where X*™ is the smooth locus of X), then clearly wx = wx
— the sheaf of regular differential forms of highest degree on X. The map yxsm
extends to give a map yx: @x [dim X ]—K%. In fact we get a map of complexes of
O-modules

v: @[dim]—K°.

Forz € X,0 € ~C’I, let res,: Hg(d)x)ﬁw(a) be the residue map in [14] (1.1),
where d = dimOx ;. Theorem 9.2 and [29] 0.2.11 gives the following result
(compare with 5.2 (iv)):

THEOREM 9.3.

ty o Hi(vx) = res,.
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