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0. Introduction

0.1. Consider the Zariski site on the category V of connected algebraic schemes
over a perfect field k. Denote the structure sheaf on this site by the symbol 0. We
assume familiarity with the notion of 0-modules as laid out in [21] pp. 28-32. On
the Zariski site we have a dualizing complex of 0-modules (0394, ttvl) (which is
unique up to unique isomorphism), i.e.

1. For each V ~ 03BD, 0394V is a residual complex (cf. [7] ch. VI, Sect. 1).
2. If V is proper, there is a map of complexes Tv : r(Y, 0394V) ~ k such that the

pair (0394V , TV) is a residue pair (cf. [28], p. 120, [29], 1.2 and also 1.6.1 of this
paper).

3. For every cartesian square in V of the form

with i, j open immersions, W1 and W2 proper over k, the relation j*Tf =

03B2-1j  03B2i holds, where
- 03B2i: i*0394W1 ~ 0394V, 03B2j: j* 0394W2 ~ 0394V are the natural restrictions of the Zariski

sheaf 0394.
- Tf :f*0394W1 ~ 0394W2 is the homotopy unique map such that TW2 is homotopic

1 In [29] the exposition is for the category of k-varieties, i.e. integral k schemes of finite type.
However the notions of (and results conceming) dualizing complexes on V carry over to our situation.
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Dualizing complexes exist - indeed in R. Hartshome’s book [7] one is essentially
constructed - and are unique up to unique isomorphism (cf. [29], 1.2.6).

The principal aim of this paper is to realize (0394, ITvl) concretely in terms
of dif,f’erential forms and cohomological residues. Cohomological residues have
been developed by J. Lipman, E. Kunz, R. Hübl (cf. [21], [22], [19], [13], [15],
[14]). We will also use, heavily, the modifications of these constructs as worked
out by I.-C. Huang in [10] and [12]. Later in this introduction, we will discuss
the difference between our approach and A. Yekutieli’s approach in [31] where
he constructs a concrete model for (0394, {TV}) on reduced algebraic k-schemes.
Yekutieli relies heavily on the theory of residues of differential forms of local fields
(rather than the residues of (local) cohomology classes, which we use). This theory
was developed by A. N. Parshin, V. G. Lomadze, A. A. Beilinson and, in the case
of topological local fields by Yekutieli himself (cf. [26], [27], [24], [1] and [31]).
Yekutieli has extended his work to include all algebraic schemes over (cf. [33]
and [32]).

0.2. TRACE STRUCTURES

Let V E V. Residue Complexes on V are built out of the various injective hulls of
the residue fields 03BA(v) (thought of as a Ov,v -module) as v varies in V. For a concrete
model of the injective hull we follow Grothendieck [4] (as does Yekutieli in [31]).
If 03C3: L - 8v,v is a pseudo-coefficient field2 then 03BA(03C3) = Homdcont03C3(V,v, wa) is
an injective hull of k(v), where 8v,v is given the mv -adic topology and Wu = 03A9dL/k
( d = tr. deg(L/k)). Given another pseudo-coefficient field 03C3, how do we assign a
canonical isomorphism between 03BA(03C3) and 03BA(03C3’) ?

One immediate observation is that (03BA(03C3),e03C3) represents the functor

Hom03C3(-, oej ) of OV,v-modules with zero-dimensional support.
In view of the above, if v e V is a smooth point, then there is a natu-

ral isomorphism between K( a) and 03BA(03C3’) described as follows: First, the pair
(Hdv(03A9nV/k), res03C3) represents the same functor that (03BA(03C3),e03C3) does, where d =
dim Ovv, n is the dimension of the irreducible component containing v, and
res, is the residue in 4.2.1 (cf. 4.2.2). Thus we have a canonical isomorphism
03BA(03C3)Hdv(03A903BDV/k). Similarly we have another isomorphism 03BA(03C3’)  Hdv(03A9nV/k)
induced by resa" and hence an isomorphism 03BA(03C3) 03BA(03C3’).

If v E V is not smooth, we achieve the isomorphism 03BA(03C3) 03BA(03C3’) by first
shrinking V around v if necessary, and then imbedding V into a smooth algebraic
k-scheme W as a closed subscheme. In greater detail, if w is the image of v in W,
and T a pseudo-coefficient field at w which is a lift of 03C3, then K ( a ) can be thought
of as the submodule of 03BA() annihilated by the kemel of the k-algebra surjection
Ôw,w--+7 V,v. If T’ is a lift of 03C3’, the isomorphism K( ) 03BA(T’) described above

2 In other words u is a k-algebra homomorphism such that o- followed by the natural surjection
V,v ~ k(v) is a finite field extension.
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restricts to an isomorphism 03BA(03C3)  (03C3’) . This last isomorphism is independent
of the auxiliary lifts T and T’ (cf. 4.5, 4.5.1, 4.6 and 4.6.1) and of W (4.6). We also
show in 4.7 that if V is reduced, this isomorphism agrees with the one deduced by
Yekutieli in [31], 4.3.13.

Let 03A803C3’03C3: 03BA(03C3)~03BA(03C3’) be the above isomorphism. Then W§1’ o W§’ = IF"’ for
a third pseudo-coefficient field cr" (cf. 4.6.2). Set k(v) : = lim~ 03BA(03C3). 03BA(v) is an
injective hull of k(v). Here are some functorial properties of K(v)-axiomatized as
a ’trace structure’ in 5.1, and proved in 5.3 - which are crucial in constructing a
concrete model of A :

1. For every pseudo-coefficient field o, of v, there a u-linear map ta: 03BA(v) ~03C903C3
such that for an OV,v-module M with zero-dimensional support, the natural
map (induced by t03C3)

is an isomorphism.
2. For a map V ~ W in V such that v is closed in the fibre f-1f(v), there is an

OW,f(v)-linear map (unique by 1. above)

such that tT o 03B8f,v = t03C3 for every pseudo-coefficient field T at f(v),
where o, is the pseudo-coefficient field at v obtained by composing T with
the natural map W,f(v) ~ V,v. Further, (03BA(v), 03B8f,v) represents the functor

Homô v,v (M, 03BA(f(v))) of OV,v-modules M with zero-dimensional support.
3. If v is a smooth point, there is an Ôv,v-linear isomorphism (unique by 1. above)

where d = dim OV,v and n is the dimension of the irreducible component of
V containing v.

The residue machinery developed in Section 3 and Section 4 is used not just to
define 03BA(v), but also the maps Of v mentioned above. Section 4 concentrates on the
case of pseudo-coefficent fields, and works out the isomorphism 03BA(03C3) 03BA(03C3’)
mentioned above.

0.3. CONSTRUCTION

If V is smooth we set K) = EV(03A9nV/k)[n], where n = dimV. Now drop the
assumption that V is smooth. For v E V let 03BA(v) denote the sky-scraper sheaf
on V induced by K(v). Suppose there is a closed immersion i:V~X with X
smooth. Then using Oz,v, there is an isomorphism of graded quasi-coherent sheaves
KVHomOx(Ov, KX), where KpV = ~d(v)=p03BA(v). The right side of the
above isomorphism is a complex, and hence induces a structure of a complex on
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the graded sheaf Kir. This structure is independent of the immersion V~X, as we
show in Section 6.

By construction, the coboundary map on Kir localizes well. Hence if V E V
is arbitrary, we may cover V by open subschemes {V03B1} each of which admits a
closed immersion i03B1 ~ X03B1 with Xa smooth, and then define a complex Kir by
glueing together the Kira. The collection {03BAV}V~03BD, with the obvious notion of a
restriction, forms a complex of (9-modules K. From the construction, if V is a
closed subscheme of a smooth scheme, then 0394V  03BAV. It tums out (cf. 8.7) that
0’ is isomorphic to K as a complex of (9-modules.

0.4. TRACES

Let f : V -W be a proper map in V. We construct a map of complexes 03B8f: f*kC ~
Kw which is concrete realization of the trace map Tf: f*0394V ~ 0394W in Duality
theory (cf. [7], VI, Section 4).

First, we extend the definition of 03B8f,v:03BA(v)~K(f(v)) to points v which are
not closed in the fibre f-1f(v) by setting 0 f,v equal to zero in this case. Let
03B8f,v:f*03BA(v)~03BA(f(v)) be the resulting map. We show that 03B8f = 03A3v~V03B8f,v:
f*03BAV~03BAW is a map of complexes and that 03B8f is a concrete realization of Tf
(cf. Section 8, Proposition 8.1, Theorem 8.6 and the remarks in 8.5). We do the
above in two stages. In Section 7, we deal with the case where W = Spec k. In
Section 8 we tackle the relative case. We use the main theorem of Section 2, viz.
2.1, in an essential way to show that 03B8f is a map of complexes. In fact if W and
f are smooth, 2.1 applies immediately. This is used to show that if f is finite and
dominant then 03B8f is a map of complexes. This last case enters in an essential way
to take care of arbitrary proper f.

0.5. COMPARISON WITH YEKUTIELI’S CONSTRUCTION

If Vred is the full subcategory of V consisting of reduced algebraic schemes, then
in [31] Yekutieli constructs a sheaf of (9-modules C (denoted K in ibid.) on the
Zariski site on Vred, which he calls the ’Grothendieck Residue Complex’. C is
isomorphic to 0’ (cf. [28], especially the exercise on p. 126).

As we mentioned in 0.1, the construction involves residues of meromorphic
differentials on topological local fields. This (non-cohomological) residue is used
(among other things) to establish the isomorphism 03BA(03C3) 03BA(03C3’) discussed in
0.2 (cf. [31], 4.3.13). Yekutieli defines a ’System of Residue Data’ ([31], 4.3.10)
- an axiomatization of what is required to construct C - and using his non-
cohomological residues, the existence of such a system is established (cf. [31],
4.3.16).

In our paper we eschew the residues of the Russian school ([26], [27], [24], [1])
as well as the topological-algebra machinery (semi-topological rings, topological
local fields) of Yekutieli, and use instead the residue machinery developed over the



137

years by Kunz, Lipman, Hubl and Huang cited in 0.13. If V E vred, then up to a
sign our complex Ky agrees with CV (cf. 9.3) provided V is equidimensional.

While this work was in progress, Yekutieli developed a theory of continuous
diferential operators on ’Beilinson Completion Algebras’ (cf. [33]) using which
he extends his results in [31] to the entire category of algebraic k-schemes and
constructs a dualizing complex of (9-modules in V in [32]. He also has traces for
proper morphisms. The interest then is in our techniques which are substantially
different from Yekutieli’s. A work of related interest is [11] of Huang.

1. Cousin complexes

We assume familiarity with the notion of a Cousin complex as laid out in [7],
as well as the explicit description of Cousin complexes given by [17], [18] and
[2]. (See also [14] Section 2). In this section we point out another description of
the Cousin complex associated to a quasi-coherent sheaf F on a scheme X (cf.
[7], p. 232, (2.3) and the Definition in ibid, p. 235) in a very special situation (cf.
Proposition 1.2 below).

1.1. Let R be a noetherian ring of finite Krull dimension, which is equidimen-
sional. In this case the ’height function’ h : Spec R~Z (here h(p) is the height of
p) is a codimension function, i.e. h(p) = h(q) + 1 for every immediate special-
ization q - p in Spec R. Let M be an R-module such that Supp(M) = Spec R,
i.e. annR M = 0. For any prime ideal p in R, we set Hp(M) = Hh(p){pRp}(Mp). Let
ER( M ) be the Cousin complex of M with respect to the filtration on Spec R given
by ZP = {p e Spec R|h(p)  p}. Then ER (M) = CS(M), the Cousin complex
associated to the system of denominators S = S(M) = S(R) (cf. [2], [17] and
[ 18] for detaiIS)4. By [2] (5.3), for any p E Spec R,

One checks easily that ERV(Mp) = Hp(M) for p = h (p). Moreover, under this
identification, a generalised fraction

as defined for example in [2], p. 18 (cf. also Section 2 of [14]) gets identified with
the corresponding generalized fraction as defined for e.g. in [21], p. 59. We use the
convention that

3 For some time, the connection between the two kinds of residues was not clear (though El-Zein’s
work [3] was a potential bridge). However Yekutieli’s work opened up possibilities, and a connection
was recently established (cf. [14] and [29]).

4 If Supp (M) ~ Spec R, then CS(M) = ER/I(M) where I = annR M.
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where 6 is the coboundary map in CS(M). This differs from the conventions
adopted by [17], [18], [2] by a sign.

The complex ER(M) gives us maps 03B4p,q: Hp(M)-Hq(M) for p and q in
Spec R. This map is zero unless p ~ q. Here ~ denotes immediate specializa-
tion.

PROPOSITION 1.2. Let p ~ q, so that .pRq is a closed point of the punctured
spectrum U = Spec RqB{qRq}. Then with M the quasi-coherent sheaf on U
induced by M, 6,,q is the natural composition

where p = h(p).
Proof. An element 03BE E Hp(M) can be represented by a generalised frac-

tion, which for typographical convenience we denote by m/g// f, where f =
(fI, ... , fp) is in SP. Let Y be the closed subscheme of U given by the vanish-
ing of the fi. Then, by definition of a system of denominators, Y consists of a
finite number of closed points, which correspond to certain prime ideals pl, ... , pr
of R of height p. Note that p occurs in this list. Since 03BE e Hp(M), therefore
03A3i03B4pi,q03BE = 03B4p,q03BE. Let Uo be the open subscheme of U on which g never vanishes,
and for 1 = 1,..., p, let Ui be the open subscheme of U on which fi never vanishes.
We are precisely in the situation examined in [21], pp. 78-81 (with F = M) and
we are done by ibid, (8.6). D

1.3. NOTATIONS. Let X be a noetherian equidimensional scheme of finite Krull
dimension. For x E X, let h(x) denote the dimension of the local ring Ox,x and
for p  0 set ZP = {x e X|h(x)  p}. For F quasi-coherent on X, El (F) will
denote the Cousin complex of F with respect to the filtration Z. as defined in [7],
p. 235. Moreover, EX(F[d]) will denote the complex EX(F)[d].

Note that if Supp(0) = X, then EX(F) can be described by 1.2.

1.4. Let Z be a Noetherian scheme of finite Krull dimension. Let z e Z, and

suppose M is a Oz,z-module with zero-dimensional support, i.e., every element
of M is annihilated by some power of the maximal ideal of OZ,z. Define a quasi-
coherent Oz-module by

(a) For U an open subset of Z,

(b) For a pair of open sets V C U, with z E V, the restriction map M(U) ~ M (V)
is defined to be the identity.

If z’ C Z is a specialization of z, and N is an Oz,z,-module with zero-
dimensional support then each OZ,z, homomorphism 4J: M~N gives rise to
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an Oz-module map ~: M~N. Conversely, an Oz-module map 1jJ: f1---+N
determines a unique OZ,z’ -homomorphism 0: M- N such that 0 ~.

1.5. RESIDUAL COMPLEXES

Recall that a complex of quasi-coherent Oz-modules F on Z is called residual if
F = ~z~Z J(z), where J(z) is an OZ,z injective hull of the residue field at z, and
if the cohomology sheaves of 0 are coherent. In this case, there is an associated
co-dimension function d: X-Z such that FP - ~d(z)=p J(z), p e z (cf. [7],
p. 287, Remark 4 and [7], pp. 305-306, Proposition (1.1) (c)).
We refer the reader to [7], Chapter VI for further details about residual

complexes.

1. 5. 1. Conventions

(a) In this paper, for any residual complex R on Z, and any z e Z, R(z) will
denote the direct summand corresponding to z, and R(z) the corresponding
OZ,z-module. In other words, if d: Z-z is the codimension function corre-
sponding to R, then R(z) = (0393zR)[d(z)]. Thus if F is the complex in 1.5
above, then 0(z) = J(z). Further, for z E Z, with d(z) = p, iz: R(z)~RP
will denote the natural inclusion, and 1r z: Rp~R(z) the natural projection.

(b) As in [28], we say that a residual complex R on Z is normalized if d(z)
-dim({z}) for every z e Z, where d is the codimension function associated
with R .

1.6. Let 1£7 be an Artin local ring; {p} : = SpecA" and I an injective hull of
the Il-module K/mK (where mK = the maximal ideal of K). Let f:X~{p}
be a finite-type morphism of schemes. For each closed point x E X, let (Xx)#
be the category of OX,x-modules with zero-dimensional support (in the notation
of [10], Section 7, (Xx)# is the category (OX,x)#. Let Modx be the category of
OX,x-modules. Define

by

Let Q denote both the localization functors K(X)~D(X) and K({p})~D({p}).
In analogy with [28] we make the following definition:

1.6.1. DEFINITION. Let f : X~{p} be proper. A pair (R, 0) is called a residue
pair if

(a) R’ is a normalized residue complex on X, and 0: f*R~I is a map of com-
plexes (here we identify quasi-coherent sheaves on {p} with K-modules).
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(b) (Qn8, Q 0) is a dualizing pair, i.e. QB: Rf*R~I induces an isomorphism

RHomX(F, QR)RHom{p}(Rf*F, I)
in D({p}) for every F8 in D+qc(X).

1.6.2. REMARK. Let f:X~{p} be proper. One can show that residue pairs
exist. This is a consequence of the fact that dualizing pairs exist and [7], p. 304, (1.1)
(cf. also p. 306, Remark 1 of ibid.).

Theorem 2 of [28] has the following generalisation:

THEOREM 1.7. Let f : X~{p} be a proper morphism; R a normalized residual
complex and B: f*R-I a map of complexes of K-modules. Then (R8, B) is a
residue pair if and only if for every closed point x E X, the pair (R(x), 0(x»
represents the functor Fx, where B(x): R(x)~I is the natural inclusion R(x) C
f*R = f(X, R8)followed by the map B: f*R~I.

Proof. Suppose (n8, B) is a residue pair. Let x E X be a closed point; M e
(X,x)# and g: M-I a member of Fx(M). Let M be the quasi-coherent sheaf
associated to M as in 1.4. Since x is a closed point it is not hard to see that M is
a sky-scraper sheaf supported at x. Clearly M is flasque, and hence Rf*M can be
identified with f*M. Let 9: f*M~I be the O{p}-map corresponding to g: M~I.
By Grothendieck duality, and the fact that M is a Cousin Complex, it is immediate
that there is a unique Ox-map h: M~R such that 9 - B o f*(h) (cf. [7], p. 247,
Lemma (3.2)). It is trivial to check that this gives rise to a unique Ox,x-linear
map h: M--+R(x) such that 03B8(x) o h = g. Thus (R(x), 0(x» represents the func-
tor Fx.

For the converse we need analogues of Lemmas 1, 2 and 3 of [28].
Let A be a local ring, essentially of finite type over K, such that K/mK~A/mA

is finite. Let ModA denote (as usual) the category of A-modules, and A# the full
subcategory of A-modules with zero-dimensional support. Define

by

Set K = Hom cK(A, I ) where the superscript ’c’ denotes continuous K-homomor-
phisms with A being endowed with its mA -adic topology and I with the mK-adic
topology. K is well-known to be an injective hull of the A-module A/m.A, and
hence K E A#. Let T e F(IC) be the K-map 03BA~I given by ’évaluation at l’. We
then have the following lemmas (compare with Lemmas 1, 2 and 3 of [28]):

LEMMA 1.7.1. (03BA, ) represents the functor F.

LEMMA 1.7.2. Let (J, q, 03B3) be a triple consisting of

(a) An injective hull J of the A-module A/mA.
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(b) An element q E F(J).
(c) An A-linear map 03B3 : 03BA~J such that q 0 , = T.

Then 03B3 is an isomorphism and (J, q) represents F.

LEMMA 1.7.3. Let S and S’ be normalized residual complexes on A (i. e. the
corresponding complexes of quasi-coherent OSpec(A) complexes on Spec(A) are
normalized residual). Let S(m) = 0393m(S) and S’(m) = 0393m(S), where 0393m is the
functor ’sections supported in m’. Then

(a) A morphism a : S ~ S’ is an isomorphism if and only if the map 0393m(03B1) : S(m)~
S’(m) is an isomorphism.

(b) If S’ is equal to S in (a), then cx is the identity map if and only if rm (03B1) is
the identity map.

The proofs of Lemmas 1.7.1, 1.7.2, 1.7.3 are, mutatis mutandis, as in Lemmas
1, 2 and 3 of [28] (cf. pp.122-124 of ibid.).
Now suppose (R, 0) is a pair such that R. is normalized residual, and

0: f*R~I is a map of complexes such that (R(x), 0(x» represents Fx for every
closed point x E X. Let (F, 03C8) be a residue pair (cf. 1.6.2). Then we have a
unique map a : R~F such that 03C8 o f*03B1 = 0. Lemmas 1.7.2 and 1.7.3 then show
that a is an isomorphism. 

2. Cousin complexes and equidimensional maps

Let f : X~Y be a dominant map of schemes. We assume throughout that X and Y
satisfy the assumptions in 1.3 and that f is equidimensional of dimension d. Let hx
and hy denote the height functions on X and Y respectively. When no confusion
is likely to arise, we suppress the subscripts X and Y in EX, EY, hx and hy. For
x ~ X, and y ~ Y, write Hx = Hh(x)x and Hy = Hh(y)y. Then ErX = (Dh x =r Hx
and Ery = EBh(y)=r Hy.

Let F be a quasi-coherent OX -module. We define for x E X, a map

as follows (with y = f(x))

(a) if x is not closed in f-1(y), then 03C1f,x = 0
(b) if x is closed in f-1 (y), so that h(x) = h(y) + d then with

we let 03C1f,x be the composition
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the isomorphism arising from the Leray Grothendieck spectral sequence. Thus
we obtain a map of graded-sheaves

The main result of this section is

PROPOSITION 2.1. With above notations, suppose Supp(F) = X and
Supp(R d f*F) = Y. Then the map p f is a homomorphism of complexes.

Write 8x for the coboundary map in EX(F[d]) and 6Y for the coboundary map
in EY(Rd,f*F). Let x E X, h(x) - r + d, and 03BE E Hr+dx(F). We need to show

We divide the proof of 2.1.1 into two cases: (a) when x is closed in its fibre, and
(b) when x is not closed in its fibre.

LEMMA 2.1.2. Suppose x is not closed in f-1 (y), where y = f(x). Then
03A303C1f,x’03B4Xx,x’03BE = 0, where the sum is taken over x~x’ with f(x’) = y and x’ closed
in j-I(y).

The lemma gives 2.1.1 for x as in the lemma. Indeed, for such an x, by definition
03C1f,x = 0, and if x-x’ and f(x’) fl y, then x’ is not closed in f-1f(x’) (cf. [7], p.
333, (3.4)).

Let V = Xy, W = Spec(Oy,y), and g:V--7W the equidimensional map
induced by f: X --7 Y. Let v e V be the point corresponding to x, and w e W the
point corresponding to y, i.e., the closed point of W.

Let E be a finite set of closed points of g-1(w). Let G03A3 be the left exact
functor:

and Fg the left exact functor:

There are natural maps ~03A3 : F03A3 ~ G03A3. For S C 03A3’ we have maps: 03BC03A303A3’: 039303C3 - 039303A3’,
03BD03A303A3’: 039303A3~G03A3’ and 03BD03A303A3’: F03A3 ~F03A3’, which make {039303A3}; {G03A3} and {F03A3} into directed
systems. Further,
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is an exact sequence of directed systems which is surjective on the right when
evaluated at a flasque sheaf. Moreover, ~03A3’  03BD = v o ~03A3. Let the direct limits of
{039303A3}, {G03A3}, and {F03A3} be 039303A6, G03A6, and F03A6 respectively. Note that F03A6 = fv; and
we have a natural map 0393v~G03A6. Let the derived functors of G03A3, F03A3, G03A6, 039303A6 be

Gg , Fj03A3, Gj03A6 and Hj03A6 respectively. Lemma 2.1.2 then follows from:

LEMMA 2.1.3. Let 03A3 be such that 03BE has a pre-image ç’ under the natural map
Fr+d03A3(F)~Hr+dv(F). Then the image of 03BE’ under

We deduce Lemma 2.1.2 from Lemma 2.1.3 as follows. A E of the sort assumed
in Lemma 2.1.3 always exists. Moreover the diagram below commutes and its top
row is exact. Consequently, the image of Hr+dv(F) in Hr+d+1q-1(w) (via the north-east
pointing arrow and the top row) is zero. Using Lemma 2.1.3, it follows that the
image of the sum 03A3v’~03A303B4Vv,v’ in Hr+d+1g-1(w) (F) is zero for 03A3 ’sufficiently large’.

(2.1.4)
We now give the proof of Lemma 2.1.3.

Proof. Let U C V be an open set containing E and let Hu - 0393v/(U-03A3)(U/03A3,-).
Then the direct limit of Hu, as U ranges over open sets containing S, is r v. Let
F(Us, -) and 0393(U03A3/03A3, -) be the direct limits over U D E of 0393(U, -) and
0393(UB03A3,-) respectively. Let their respective derived functors be H2(UE, -) and
Hi(u03A3B03A3,-). Then for U ~ 03A3, we have an exact sequence

with the right arrow being surjective when evaluated on flasque sheaves. The result-
ing connecting homomorphism Hr+d(U03A3/03A3,-)-Hr+d+103A3 is compatible with the
connecting homomorphism Hr+d(U/03A3,-)~Hr+d+103A3 in an obvious sense.
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Here is another description of 03A3v’~03A303B4v(v,v’) in terms of this connecting
homomorphism. On taking direct limits, the natural maps HU~0393(UB03A3,-)
give rise to a natural map rv =  HU~0393(U03A3B03A3, - ) and hence maps Hiv ~
Hi(U03A3B03A3, -). Then 03A3v’~03A303B4Vv,v’ is also the composition

This follows from 1.2. Since the diagram

commutes, and the composition of the arrows in the bottom row is precisely the

map F03A3~  F03A3’ = r v, therefore the composition Fr+d03A3(F)~Hr+dv(F)~
Hr+d(U03A3B03A3, F) is also the composition Fr+d03A3(F)~Hr+d(V/03A3 , F) ~
Hr+d(U03A3 /03A3, F). Now use the compatibility of the connecting homomorphisms
Hr+d(U03A3B03A3, F)~Hr+d+103A3(F) and Hr+d(VB03A3,F)~Hr+d+103A3(F) as well as the
description of 03A3v’~03A3 03B4Vv,v’ to reach the desired conclusion. 

LEMMA 2.1.6. Suppose x is closed in f-1(y). Then for an immediate special-
ization y ~ y’, the equation

holds, where the x’ run through x ~ x’ such that x’ E f-1(y’).
This lemma gives 2.1.1 for x closed in f-1(y). Indeed if x ~ x’, then x’ is

closed in f-1f(x’) if and only if y ~ f(x’) (apply [7], p. 333, (3.4)).
Proof. Let W = Spec(OY,y’), Y = X X Y W, and g: V-W the equidimen-

sional map induced by f. Let w, w’ e W be the points corresponding to y, y’ e Y
respectively (so that w’ is the unique closed point of W). Let v e V be the point
corresponding to x e X. Note that v contains only closed points of V other
than v itself, and hence v has dimension 1. Thus v ~ g-1(w) is a finite set, say
v1, ... , vn. Set V’ = VB{v1, ..., v,,1. Then v is a closed point of V’. For simplic-
ity denote Fv by J7. One checks that if Ji: Hr+d(VBg-1(w’), F)~Hr+d+1g-1(w’)(F)
and v: Hr(wB{w’}, Rdg*F)~Hr+1w’(Rdg*F) are the corresponding connecting
homomorphisms (cf. [8], p. 9, Prop. 1.9), then the diagram
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commutes, where the vertical isomorphisms arise, as usual, from the Grothendieck-
Leray spectral sequences. The sign (-1 )d arises from comparing the various spec-
tral sequences arising from a Cartan-Eilenberg resolution of g* J where J8 is an
injective resolution of F.

On the other hand we have a commutative diagram

where 1 is the connecting homomorphism of [8], p. 9, Prop. 1.9. Since EV(F[d]) =
EV(F)[d], therefore 03BC = (-1)d03A3ni=103B4Vv,vi. Putting together 2.1.8 and 2.1.9 we see
that 2.1.7 holds. 

2.2. PROPER SMOOTH SCHEMES OVER AN ARTIN LOCAL RING

Let f: X -(p) be a proper smooth morphism of schemes where {p} = Spec(A")
is the spectrum of an Artin local ring Il. Fix an injective hull I of the residue
field of Il (thought of as a K-module). Assume X is connected and has dimension
d. Define n1 to be the top exterior power of the sheaf of relative of forms of the
morphism f. Let K* - E(03A903B4f ~ f*I[d]). It is well-known that KX is a normalized
residual complex. For a closed point x E X let res x: Hdx(03A9df~K) be the map on
the bottom of page 119 of [23] (cf. also [15], Definiton (2.1)). One application of
2.1 and 1.7 is the following

THEOREM 2.2.1. The map of graded O{p}-modules

(where the sum runs over closed points x ~ X) is a map of complexes. Moreover
the pair (KI, ff,I) is a residue pair.
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EXPLANATION. It is not very difficult to see that for a closed point x G X, the

OX,x-module lC(x) = Hdx(03A9df) ~ I.
Proof. Let X/{p} : Rdf*03A9df~K be the integral in the main theorem of [16]

(pp. 750-752 of loc cit.). Consider the map of complexes given by the composi-
tion

By the definition of p and by the Residue Theorem of [16], p. 752, we see that this
composition is f,I. (See also bottom of p. 119, and top of p. 120 of [23]). This
gives the first half of the theorem. The remaining part follows from 1.7 and from
the results in the next section (cf. 3.11 and 3.12(a)). 

3. Residues

3.1. DEFINITIONS, NOTATIONS AND REMARKS

All rings considered are commutative noetherian.

(a) For a field extension L-Il, we write trdegLI( for the transcendence degree
of Il over L.

(b) If A-B is a local homomorphism between local rings, then we write
rel dim(B/A) for the relative dimension of B/A, i.e. for dim B - dim A.

(c) For any local ring A, we set mA = the maximal ideal of A; and kA = A/mA.
Let A-B be a local homomorphism of local rings, then the homomorphism
is said to be residually finite (resp. residually finitely generated) if kA~kB is
a finite (resp. finitely generated) extension of fields.

(d) r,f (resp. rfg) will denote the category whose objects are complete local rings,
and whose morphisms are residually finite (resp. residually finitely generated).
Ql js will denote the subcategory of rfg whose objects are complete local rings,
and whose morphisms are formally smooth ring homomorphisms.

(e) Let A~B be in fs.
(i) We say that b1,..., br e B is a regular system of parameters (resp. system

of parameters) if mB = Bb1 + ... + Bbr + mAB (resp. the images of
b 1, ... , br in B / mA B are a system of parameters for B/mAB).

(ii) Let 1B/A be the universally separated differential module of B /A, i.e.

1B/A := 03A91B/A/ ni mknk/A. For each integer p  0, define the module
of universally separated p-forms of B/A thus:

BIA B B/A°
(f) If A-B is a morphism in fs is as in (b) and kA~kB is of transcendence

degree q, then 1B/A is finite and free of rank r + q (cf. [10], p. 14, (3.9)).
Consequently r+1B/A is finite, free of rank 1 (and hence isomorphic, non-
canonically, to B).
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(g) We assume familiarity with the generalized fraction notation for elements in
cohomology modules with supports in an ideal, and rules for manipulating
these generalized fractions (cf. for e.g. [ 15] Sect. 3, pp. 71-72 or [10], Sect. 2).

(h) Let A-R be in fs. Let t1, ... , td e R be a system of parameters for R/A.
Let q be the transcendence degree of A/mA~R/mR. Let J = (tl, ... , td)R.
Set Mi = R/mi. Then there is a canonical isomorphism

The map is given via the identification

3.2. RESIDUES FOR SURJECTIVE MAPS

Suppose we have a commutative diagram

such that every arrow is residually finitely generated; S/A and P/A are formally
smooth algebras; and as indicated in the diagram PS is surjective. Let the
relative dimensions of P/A (resp S/A) be n (resp. d). Let q be the transcendence
degree of A/mA~S/mS. It is well-known that I = ker(03C0) is generated by a P-
regular sequence t1, ... , tn_d (cf. for example [20], p. 314, C. 4). Let YI , ... , Yd ~ S
be a regular system of parameters for S/A. If Y/ 1 ... , y’d e P are pre-images of
y1, ..., yd then tl, ... , tn-d, y( , y’ are a regular system of parameters for P/A.
For an A-module M of zero-dimensional support, we define a P-linear residue
map

via the formula

Res slp,m
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where s’ is any pre-image of s E S; 03BE1, ... , 03BEq E S are such that 03BE1 -f-ms, ... , 03BEq+mS
form a differential basis for Slms over A/mA, and 03BE’1,..., g§ E P are any pre-
images of 03BE,..., 03BEq (cf. [25], p. 201, for a definition of differential basis). Since

for x e I (in view of the t 1, ... , tn-d occurring in the denominator of the general-
ized fraction), therefore the right side of 3.2.2 is well defined. Using the calculus for
generalized fractions (enunciated for e.g. in [15], Sect. 3, pp. 71-72, [10], Sect. 2
or [21 ], p. 60, 7.2) it is not hard to see that the map Res S/P,M is independent of all
choices involved (i.e. of t 1,..., tn-d, y’1, ... , y’d, 03BE1, ... 03BEq, 03BE’1, ..., ’
We will write Res slp (or even simply Res ) for Res S/P,M when no confusion

is likely to arise.

Now

and

Set Mi : = A/miA. The maps Res S/P,Mi give us a map

via the isomorphism 3.1.1. We will write ResS/P,A (or ResS/P, and sometimes
even Res ) for Res S/P/JS,JP,A when no confusion is likely to arise.

It is not hard to check that for an A-module with zero-dimensional support

PROPOSITION 3.2.5. Let P~Q~S be a pair of surjective homomorphisms of
formally smooth, complete local A-algebras (A a complete local ring), residually
finitely generated over A. Then

(a) For all A-modules M with zero-dimensional support
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Proof. The proposition is an obvious consequence of the definitions.

3.2.6. REMARK. It is not hard to see that Res SjP,M gives an isomorphism a

3.3. FACTORIZATIONS

Let RT be a morphism in rfg. We follow I-C. Huang (cf. [10](6.1)) and

call a triple (S, ri, 1f) a factori,zation of RT, if ~: R~S is in (£f8; 1f: S~T is
surjective and 1r o ~ = f. A factorization (S1, ~1, 7r1) of f is dominated by another
factorization (S2, ~2, 03C02) of f if

(i) ~1 = ~2 ; 03C02   = 03C01
(ii) T is in fs.

(cf. [ibid.], (6.2)). In this case 62 as an S1-algebra (via T) is a power series ring
over Si ([ibid.] (6.3)). We collect together some results of I-C. Huang.

LEMMA 3.3.1. [I-C. Huang]

(a) Every morphism in rfg possesses a factorization.
(b) Any two factorizations of a morphism in rfg are dominated by a third.
(c) If ( S, ~, 7r) is a fa ctorization of f : R-T then there is an R-algebra isomor-

phism SR[X1,..., Xn]p/I where p E Spec(R[X1,..., Xn]) and I is an
ideal of R[X1,..., Xn]p.

Proof. Proof of (a) is as in [10] (3.11), of (b) in [ibid.] (6.4). The assertion in
[ibid. ] (3.11) is proved by producing a factorization with S = R[X1,..., Xn]p.
In view of this and (b), given any factorization (S, ~, 03C0), it is dominated by
(S’, ~’, 03C0’) where S’ = R[X1, ..., Xn]p [Y1, ..., Ym|]. Clearly S’ = R[X1, ..., Xn,
Y1,..., Ym]q for some q E Spec R[X1,..., Xn, Y1, ..., Ym]. Since S’ is a power
series over S, there is a surjective map S’~S and hence (c) follows.

For f : R~T a morphism in rfg, denote the collection of all factorizations of
f of the form R~R[X1,..., Xn]p~T by Ff.
3.3.2. REMARK

(a) Given two factorizations (S1, ~1, 03C01) and (S2, ~2, 03C02) of f:R~T, by 3.3.1.
(b) there is a factorization ( S’, ri’, 1r’) dominating both (by say Tl : S1~S’ and
T2: S2~S’). Since S’ is a power series algebra over S1 (resp. S2), therefore
there is a surjective map pl : S’~S1 (resp. p’2: S’~S2) such that p; o ri = idsl
(resp. p’2  T2 = idS2). Using 3.3.1. (c) S’ is the homomorphic image of
S = R[X1,..., Xn]p. Hence we can find (S, ri, 03C0) E Ff and surjective maps
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pl : S~S1 and p2: S~S2 such that Pi o q = 71j, 03C0i 0 Pi == Jr for i = 1, 2. In
other words we have a commutative diagram

with pi, p2 surjective. Diagrams like 3.3.3. will be useful when comparing
residues etc.

(b) Any two factorizations (S1, ~1, 03C01) (52, ~2, 03C02) in Fj are dominated by a
third factorization in Ff. Indeed, if S1 = R[X(1)1,..., X(1)n]p1 and S2 =

R[X(2)1, ..., X(2)m]p2, then set S : = R[X1(1)1, ... , X(1)n, X(2)1, ..., X(2)m]p where
p is the inverse image of mT under the natural map R[X(1)1,..,X(1)n,
X(2)1,..., X(2)m ]~T.

THEOREM 3.4. There exists a unique family of maps

one for each morphism f : A~S in fs n rf of relative dimension d, and for each
M E A# such that

(a) res SjA,M is A-linear, and functorial in M E A#.
(b) If S = A[X1,.. , Xd]p, then res S/A,m equals the map res X1,..,,Xd;S/A,M of

[10] (7.1).
(c) If ( P, 17, 03C0) is a factorization of f then res S/A,M = res P/A,M o ResS/P,M

where ResS/P,M is the map in 3.2.1. 

Proof. Since any f: A~S in ct f s ~ ctr j has a factorization (P, ~, 7r) E Ff
(i.e. P = A[X1,..., Xn]p), therefore (b) and (c) give uniqueness of the family
resS/A,MS/A,M. Since ress/A,m is functorial in M E A# if S = A[X1,..., Xd]p,
and ResS/P,M is also functorial in M E A# for any factorization (P, ~, 1r ) of A~S,
therefore functoriality in M E A# will follow from the remaining assertions.

For general f: A- S in fs ~ ctrj we define ress/A,m by taking a factoriz-
ation (P, ~, 7r) E Ff and setting resp := reSpjA,M o Ress/A,M. If (P’, 71’, 03C0’)
is another member of Ff, we claim that res Pl = resp. In view of 3.3.2(b) we
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may assume P’ = P[|Y1,...,Yt|], and that q’ is the composition AP

P[|Y1,..., Yt ] and 03C0’ is the composition P[|Y1,..., Yt|]PS. One checks
readily that resP/A = resp’/A o Resp/p,. Since ResS/P’ = Resp/p, o Ress/p,
the assertion follows. Define resS/A,M to be the common value of res p for
(P, ~, 03C0) E F f . Assertion (c) above follows from 3.3.1(c), and the transitivity
property of Res S/ p . 0

3.4.1. REMARK. Let A~A[X1,..., Xd]A be in rf. Corollary (7.7) of [10]
says that resX1,...,Xd;S/M of ibid. (7.1) does not dépend on the order of the X,.
The discussion after the proof of ibid. (7.7) shows that the subscript X 1, ... , Xd
(ordered or unordered) is unnecessary.

3.5. DEFINITION. Let f : A- S be a morphism in (tfs n Cr j of relative dimen-
sion d, and let x1,..., x d E S be a system of parameters for SIA. Let J =

(x1,..,xd)S. Note that for any M E A#, there is a canonical identification

HdmS(dS/A ~ M) = HdJ(dS/A ~ M). For i &#x3E; 0, let Mi = A/miA. The maps
Ress/ P,Mz give us a map - the residue map of S/A along J

via the isomorphism 3.1.1.

PROPOSITION 3.6. Let A~S be a morphism in fs ~ rf, and let J =
(x1,..., xd)S be as above. Then

(a) For any M E A#,

(b) If ( P, Tl, 1r) is a factorization of A~S, and if x’1, ... , x d, t1,..., tn E P

are a system of parameters of P/A with 03C0(x’i) = xi, ( i = 1,..., d ), and
(t1,...,tn)P = ker(03C0), then with J’ = (x’1,.. , x’d,t1,...,tn)P we have

Proof Assertion (a) can be proved from definitions. Part (b) follows from (a)
and part (c) of 3.4. a

3.7. SURJECTIVE BASE CHANGE

Let P be the push-out of f : A-+B and g : A- S , where f, g E rf. Assume A- S is

surjective and A~B (and hence S L P) is formally smooth of relative dimension
m. Let .M E A# and set N : = HomA (S, M) E S#. If # is the pseudo-functor on
rf in [10] Section 6, then N g#M. Using the fact that f’#g#Mg’#f#M we
get an isomorphism of P-modules:



152

If ~: HmmP(mP/S ~ N) ~ HnmB(mB/A ~ M) is the B-linear map gotten by following
the isomorphism above by ’évaluation at l’, then chasing various définitions one
sees that

where 11, ... , tm E P are a regular system of parameters for P/ S, t’1,..., tm E B
pre-images of tl , ... , tm, VI E nB/A a pre-image of v. The right-side does not
dépend on the choice of 03BD’, t1, ..., tm since 03C8(n) is annihilated by I = ker(g ) . The
map 0 does not depend on the sequence t1, ... , tm either. One checks easily from
definitions that

where e is ’evaluation at l’. One immediate consequence of the above is:

PROPOSITION 3.8. [Transitivity of Residues]. Let R  S and ST be mor-
phisms in f03C3 ~ rf of relative dimensions d and n respectively. Consider T as an
R-algebra by comparing the above maps. Then

(b) Let t 1, ... , td E S be a regular system of parameters for SIR, and extend this
to a regular system of parameters t1, ..., td, y1, ..., yn E T for TIR (so that
Yi, ..., Yn is a regular system of parameters for T/S). Let I = (t1,..., td)S,
I’ = (YI, ..., yn)T, J = IT+I’. Identifying Hn+dJ(n+dT/R) with HnI’(nT/S ~S
HdI(dS/R)), we have
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Proof Clearly it is enough to prove part (a). If S = R[X1,..., Xd]p and
T = S[Y1, ..., Yn]p then it is not difficult to prove the assertion (cf. [10] (7.2)(1)).
In general we have a commutative diagram

where A = R[X1,..., Xd+p]p, B = A[Y1,..., Yn+q]q, then rectangle on the top
left corner is as in the beginning of 3.7. Existence of such diagrams can be seen,
for e.g., by picking a factorization R~A~S in Fg1, and one A~B~T in Fg2og,
and setting P = B 0A S. For an R-algebra R~U in cLfs n rf, let G(U) :=
HtmU (tU/R ~ M), where t is the relative dimension of U/R. For U as above, and a
U-algebra U~V in fs ~ rf of relative dimension s, let H (V) := HsmV(sV/U ~
G(U)). Then we can identify G(V) with H(V). Under this identification, the
map Res P/B: G(P)~G(B) can be identified with Res S/A: H(P)~H(B). Now
replacing all the rings U in the diagram above by G( U), and replacing all horizontal
rows by Res (but going from right to left) and vertical arrows by res (but now
pointing downwards), we get a diagram that continues to commute (use the results
of 3.7 and 3.4). By previous comments res A/Rores B/A = res B/R, and by 3.2.5(a),
Res P/B o Res T/P 

= Res T / B, and hence

as required. 0

3.9. Let A be a complete local ring. Let R~S be a map of A-algebras with R/A
and S/A in fs, and S/R a finite local (and hence global) complete intersection
algebra (so that S and R have the same dimension). In this situation, there is,
according to [20] Section 16, a degree zero map of graded R-modules

such that for each p E N, the map
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is bijective for each r ~ N.
Next let (P, ~, 03C0) be a factorization of R~S, and I = ker( 7r ). Let

reldim(P/R) = n; that of R/A be d; and let q := tr degkA kR. Now I is gen-
erated by a P-regular sequence t= (t 1 , ..., tn- d ) . Note that t forms a system of
parameters P / R and hence resP/R,I: HnI(nP/R)~R is defined. Set as / R =

THEOREM 3.10. In the above situation

Proof. Clearly it is enough to prove (a). By 3.4(c) and comments in 3.3.2
(esp. 3.3.3) we conclude that the composition res P/R,N o Res S/P,M is independent
of the factorization (P, ~, 03C0). Since S/R is a global complete intersection there
is a presentation R[X1,...,Xn]/(t1,..., tn)S. Let Q = R[X1,..., Xn] and
P = R[X1,.., Xn]p where p is the inverse image of ms in Q.

For any system of parameters g = (g1,..., gn ) of P/R, define

as follows: Set Sg := P/gP. By [20], p. 370, F. 20 and F. 21 there is a trace map
xg: Sg~R. Define Tg by following the surjection P~Sg by xg. By [20], p. 375,
Prop. F. 26, if g’ = (g’1, ... , gn ) is another such sequence in P with

then

where 0394gg’ is multiplication by det( aij). For ai , ... , an &#x3E; 0, set ga := (ga11,...,gann).
Huang in [10] Section 7 (cf. especially (7.1) and (7.2) (b) of loc.cit.) finds P-regular
sequence f = (f1,... fn) in P such that for M E R#, and any m E M, p E P
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This is seen by modifying slightly the arguments in [20], F. 22(b).
Let r E N be such that fr P : = ( f i , ... , f1 )P is contained in ( t 1, ... , tn)P +

mRP (such an r exists since the radical of tP + MRP is fP + mRP). Let

One checks (by applying [20], p. 376, Prop. F. 27 to the base change R~R/mR)
that Xt(P) differs from Xfr(det(aij)p) by an element in mR.

Let w = s dzl ... dzd dÇ1 ... d03BEq and let s’, z’, 03BE’ be pre-images of s, z, 03BE in Q.
Set 03C9’ = s’ dt ... dtn dzl ... dzd d03BE’1 ... d03BE’q E n+d+qQ/A, According to [20], p. 254,
16.4 if 03C9’ = pdX1... dXn 0 v (p E Q, 03BD E d+qQ/A) then

Now for any system of parameters y = (y1,... yd) of R/A, we have

Whence

as required.
3.11. REMARK. Let A~B be a smooth algebra of finite type, equidimensional of
dimension d; A excellent; Ass(A) = Min(A). Let p E Max(B) and q E p n A, and
let t = (t1,..., td) be a system of parameters for Bp/Aq. Set R : = Âq, S : - Êp.
In this situation Hübl and Kunz define a residue map
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(Cf. [15] Sect. 3, p. 76. Cf. also ibid., p. 64, (2.1)). Clearly, in view of 3.8(b) and
3.10(b) and the definition of RespS,tS, we have

THEOREM 3.12. [Local Duality]. Let f: A~S be a morphism in rf ~ fs of
relative dimension d.

(a) For each M E A#, the residue map res S/A,M induces an isomorphism of S-
modules 

whence we have an isomorphism of S-modules

for all N E S#.
(b) If x = (x1,..., xd) is a system of parameters of S / A, then for every finitely

generated S-module N, the S-homomorphism

is an isomorphism of S-modules.

Proof. For part (a), let (P, q, 7r) be a factorization of A~S. From 3.2.6 and
[10] (7.3), the map HdmS(~S/AM)~HomcA(S, M) given by res SIA is seen to be
an isomorphism. The remaining part of (a) is a trivial consequence of the natural
isomorphism Homs(N, HomÂ(S, M))HomA(N, M) for N E S#.

Note that (b) is well-known if S is a power series ring over A. We first prove (b)
under the assumption that A is an Artin local ring. Let x1,..., xd ~ S be a regular
system of parameters for S/A. Set R := A[|X1,..., Xd|] (Xl, ..., Xd analytically
independent). Define R- S by sending Xi to Xi. Clearly R- S is finite. It is well-
known that it is flat (cf. for example [20], p. 310, B. 27), and using [20], p. 314,
C. 4, it is a global complete intersection. Let, as usual, USIR: dS/A~dR/A be the
dth component of the trace map 3.9.1. By 3.10, rês SIA = resR/A o HdmR(03C3S/R).
Using the fact that dS/A is isomorphic to HomR(S, dR/A) via (JS/R one sees that
the result is true in this case (cf. [21], p. 69, (7.5)).
Now we drop the assumption that A is Artinian. Let N be a finitely generated

S-module and 0: HdxS(N)~A an A-linear map. For pEN, let A(p) = A/mAp,
S(p) = S/mApS, N(p) = N/mAPN and ~(p) = ~~A A/MAP: HdxS(p) (N(p))~
A(p). By 3.7.1 and by local duality for S(p)/A(p) (A(p) being Artin) we have a
unique S(p)-linear map
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suchthato(p) = resS(p)/A(p)  HdxS(p) (03A8(p)). One checks by the universal property
of (dS(p)/A(p), res S(p)/A(p)) that the diagram

commutes, where the vertical arrows are natural. Define using 3.1.1 via {03A8(p)}.
Clearly (by definition of rês S/A), 0 = resS/A o HdxS(03A8). Uniqueness of the S-
map satisfying the above formula follows from the uniqueness of W p) for each
p e N. 0

3.12.1. REMARK. Let A be a complete local ring and let A~R, R-P be in et f s.
Let S be a homomorphic image of P, with S/A formally smooth, and the induced
map R- S surjective. Then by [10], p. 21, Section 5, .P is a power series ring over
R. Using this it is not hard to show that

and

4. Pseudo-coefficient fields and residues

For the rest of the paper we will work over a fixed perfect field k.
Given a map k-S in rfg, and a field L in S containing the image of k,

such that kS is finite over L - there is a way of constructing an injective hull of
the S-module ks, described for example by Hartshome in [8], p. 63, Example 1.
Given two such fields, we describe in 4.6, a canonical isomorphism between the
two constructions. The isomorphism depends heavily on the theory of residues
developed below and in the last section. Moreover, this isomorphism agrees with
the one in [31 ] wherever both make sense (cf. 4.7).

4.1. DEFINITIONS, NOTATIONS AND REMARKS

(a) If A is a k-algebra such that the structural map k- A is in rfg, then we write
A E Qlk (or, more often than not, simply A E Q:). Q: with morphisms being
members of rfg, is a category.
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(b) If A is in C, and A is formally smooth over k, then we write A E k fs. In this
case we set H ( A) = HmmA(m+qA/k) where m = dim A, and q = tr. degk k,4.

(c) Since k is perfect, if L ~  is a field, then L E kfs. In this case we define

where q = tr.degkL.
(d) Let (7: L~A be a morphism in C, with L being a field. We say cr, is a coefficient

field (resp. pseudo-coefficient field, resp. quasi-coefficient field) if cr, followed
by the natural surjection A~kA is an isomorphism (resp. a finite extension of
fields, resp. an étale extension of fields).

(e) For A E C, set

If the domain of cr E CA is not specified, then we write La for the domain of
cr, andwa for 03C9L03C3.

Note that K( a) is an injective hull of kA over A (cf. [8], p. 63, Example 1).
Define

to be ’evaluation at l’.

(g) Let A E (t, and a E CA. Define a functor G03C3: A#~ModA by setting Ga : =
Hom03C3(-, 03C903C3). Then by 1.7.1, the pair (03BA(03C3), e03C3) represents G,.

(h) Let SR be a finite map in (L Let T : L- S be a pseudo-coefficient field and
set or = f o T C CR. Since (K( T), e) represents GT, therefore there is a unique
S-map

such that

We claim that the map of R-modules

induced by -il is an isomorphism. This is seen by noting that the natural map

is an isomorphism.
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(i) In particular, if S - R above is surjective, then -y’ is injective, since 039303C3 identifies
03BA(03C3) with the S-submodule of /C(r) annihilated by ker f.

4.2. RESIDUES FOR PSEUDO-COEFFICIENT FIELDS

Let S ~ kfs. Let a : L ~ S be a pseudo-coefficient field. Let ( P, ri, 7r) be a factoriza-
tion ofcr. As in the proof of 3.4(c), one checks that resP/L,03C9L 0 ResS / P, k : H(S)~
03C9L is independent of the factorization (P, ~, 03C0). Denote this map:

If x = (x1 ...,xd) is a regular system of parameters for S, then R =

L[|x1,..., xd|](~ S) is a power series ring over R and the algebra S/R is finite,
flat, and a global complete intersection. Let T : L~R be the natural map. Let

q = tr.degkkS and let p = d + q. Then by 3.10 res03C3 = resT o HdmR(03C3S/R) where
03C3S/R is the pth component of the map 3.9.1. Consequently res03C3 is a special case of
the residue defined in [14] (1.1). Using this, one checks the following:

PROPOSITION 4.2.2. The pair (pS/k, res03C3) represents the functor

Hom03C3(HdmS(M), 03C9L) offinitely generated S-modules M.
4.2.3. REMARK. Let f : R~S be in C js with R E kfs. Then identifying H(S)
with HnmS(nS/R ~ H(R)) ( n = rel.dim S/R) via [10] p.19, 4.5 (ii), we can show,
as in 3.8 that for 03C3 E CR, resfo03C3 = res03C3 o resS/R,H(R) (cf. also [14] Prop. 1.3 and
Cor. 1.4)). 

PROPOSITION 4.2.4. Let S E k fs. The unique S-linear map

satisfying ea o8a = resa is an isomorphism. In other words, the pair (H(S), res03C3)
represents the functor G, of 4.1 (g).

Proof. It is well-known that H(S) is an injective hull of ks with respect to S,
and so is K( cr). Hence there is a (non-canonical) isomorphism

Let 03B803C3: H(S)~03C9L be the map corresponding to ea under 1/Ja. Then by 4.2.2 there is
a map h:pS/k ~ pS/k such that res03C3  HdmS(h) = 03B803C3. Applying 1.7.2 to J = H(S),
q = resa, 1 = HdmS(h) o 1/Ja we get the proposition. 0

4.3. DEFINITION. Let S  R be a surj ective ring homomorphism in , and let
cr E CR. We say T E Cs is a lift of 03C3, (or T lifts 03C3 to S) if f o T = a.
We need the following well known (and easy) fact:
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PROPOSITION 4.4. Let S-R be a surjective ring homomorphism in . Then
every o, E CR has a lift in Cs.

4.4.1. REMARKS. Let S L R, cr E CR, T E Cs be as in the Proposition, and let
S E k fs·
(a) By 4.2.2, we have a unique S-map

such that resT o ~03C3 = ea. If 8T: H(S)~03BA() is the isomorphism in 4.2.2 then
clearly

where yâ is as in 4.1(h).
(b) Let I = ker( f ) and define an S-submodule of H(S) thus:

In view of (a) above, and 4.1(i), ~03C3: 03BA(03C3)~H(S) is injective and takes values
in H(S)(f). Let

denote the resulting isomorphism.

(c) Let S’ Ls be another surjective ring homomorphism in , with S’ E k fs. Let
T’ E Cs, be a lift of T E Cs. Then,

THEOREM 4.5. Let SR be a surjective ring homomorphism in Q:, with S E k f S.
Let Tl , T2 E Cs be two lifts of a pseudo-coeffccient field 03C3: L~R. Then

Proof. Let T be any lift of cr. We have to show that ~03C3 is independent of T. Let
i, j be the canonical inclusions of k in S and L respectively. Then i, j are formally
smooth, T, cr are residually finite and T j = i and f T = cr.

Consider the following three pseudo-functors defined in [10] (our notations
differ from ibid.):

(i) (-)bon rf defined in (4.4) of ibid. Here, for T E rf, Tb is the category of
T-modules with 0-dimensional support, and for a morphism TT’ in rf,
gb = HomcT(T’, -).

(ii) (-)# on fs defined in (4.5) of ibid. For T ~ fs, T# is the category of T-
modules with 0-dimensional support. For a morphism TT’ in fs, g# =
HmmT’ (tT’/T 0y -). where d is the relative dimension of T’ eT and t is

defined by t - d = tr.degkT kT,.
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(iii) (-)* on rfg defined in Section 6 of ibid.

On ctr f, (-)b and (-)* are isomorphic by Section 7 of [10]. On fs, (-)# and
(-)* are isomorphic by construction. Identifying H(S)(f) with Hom s(R, H(S)),
we see that (~03C3)-1 is the composition (with all arrows arising from the natural
isomorphisms between the various pseudo-functors)

To show that this composition is independent of T it is enough to show that
the following diagram commutes (for the composition along the western border
followed by the composition along the southern border does not involve T).

All arrows here are isomorphisms, and one checks easily that each subrectangle
commutes. 0

4.5.1. REMARK. Let f : S~R be a map in  which is surjective, with S E kfs.
Then for a E CR, the above theorem tells us that we have a unique map

such that for every T E Cs which lifts cr, resT o ~03C3 equals e03C3. ~f03C3 maps 03BA(03C3)
isomorphically onto H(S)(f), and hence we have an isomorphism

induced by ~f03C3.
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4.6. DEFINITION. Let R E ça, and 03C3, 03C3’ E CR. Define an isomorphism 03A803C3’03C3 :
03BA(03C3)03BA(03C3’) as follows: Pick a surjective map f : S~R in  with S E k fs
(such a map always exists). By 4.4 we can find lifts T, T’ E Cs of o, and cr’ respec-
tively. With 03A6f03C3 and 03A6f03C3’ as in 4.5.1 we define:

A priori the isomorphism depends on the surjective map f : S-R, but we will
show that it is independent of this map. Let f’: S’-R be another map in  which
is surjective, with S’ E kfs. By 3.3.2 and 3.3.3 we may assume that there is a sur-
jective k-algebra homomorphism p: S’ ~ S such that f’ = f o p. Let ~, e Cs, be
lifts of T and T’ respectively. Now Res sIs’: H(S)~H(S’) maps H(S) isomorphi-
cally onto the S’-submodule H(S’)(p), and hence maps H(S)(f) isomorphically
onto H(S’)( f’). Let -i: H(s)(f)H(S’)(f’) be the induced isomorphism. By
4.4.1(c), 03A6f’03C3 = 03B3 o 03A6f03C3 fi f It follows that 03A803C3’03C3 = (03A6f’03C3’)-1 0 fi
Thus the isomorphism 03A803C3’03C3 is independent of all choices.

From the definitions it is immediate that for three pseudo-coefficient fields,
cr, cr’, 03C3" E CR, we have

Note that if R’ ~ , and if we have a surjective map g : R’-R in , and T, T’ E
CR, are lifts of 03C3, a’ E CR, then

where 03B303C3 and 03B3’03C3’ are as in 4.1 (h).
THEOREM 4.7. Let X be reduced algebraic k-scheme and x E X a point. Let
R = Ox,x and let cr, 03C3’ E CR. Let 03A603C3,03C3’: 03BA(03C3) ~ 03BA(03C3’) be the R-isomorphism in
[31], p. 96, 4.3.13. Then 

Proof If R E k fs then this is a consequence of [29] 0.2.11 and [14] Theorem
2.2. Otherwise, by replacing X by a smaller open neighbourhood of x if necessary,
we may assume that there is a closed immersion 1: X-Y, with Y a smooth
variety. Let g = i(x), and R’ = OY,. We have a natural surjection g: R’-R
(corresponding to 2). Let T, T’ E CR’ be lifts of 03C3 and a’ respectively. Lemma 4.4.8
of [31 ] and the definition of 03A603C3,03C3’ gives:

Since 03A6,’ = 03C8 (R’ being in k fs) and since 03B303C3, 03B303C3’ are injective maps, therefore
the proposition follows by comparing the above equation with 4.6.3. D
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We end this section with a change of rings theorem for 4.6.1 which contains as
a special case 4.6.3.

THEOREM 4.8. Let f : S-R be a finite map in . Let a, cr’ E CR and let T, T’ E
Cs be lifts of cr and 03C3’. Then

Proof. Pick a surjective ring homomorphism S’S in  with S’ E k fs.
Let ( f’, R’, g’) be a factorization of f o g: S’-R. One checks (using 4.2.3) that
c/l!, o ,; = Res R’ / s’ o ~g’03C3 and ~g’ o 03B303C3’ = ResR’/S’ o ~g’03C3’. It follows that we have

The theorem follows. D

5. Trace structures

5.1. DEFINITION A trace-structure on  consists of:

(i) An injective hull /C(R) of the R-module R/mR for each R E é.
(ii) For each R E Ql and each cr E CR, a cr-linear map ta: 03BA(R)~03C9(03C3) such that

for R E :

(a) The pair (lC(R), ta) represents the functor Ger for each a E CR.
(b) If R is formally smooth over k, there exists an R-map (unique by (a)

above) 4JR: H(R)-À§(R) such that 1, o 4JR = resa (cf. 42.1) for every
0’ E CR. (Note: Such a 4JR is necessarily an isomorphism by 4.2.4).

(c) If f : R- S is a morphism in Ql such that the residue field extension is finite,
there exists an R-map (unique by (a) above): t:03BA(S)~03BA(R) such that
ter o f = t foa for every a E Cp.

5.2. REMARKS.

(i) We stress that ~R and 7f in (b) and (c) above are required to be independent
of Q E C.

(ii) If f: R- S is as in (c) above, then one checks, rather easily, that the map 7f
induces an S-isomorphism Tf: 03BA(S)HomcR(S,K(R)), where the right side
is the S-module of continuous R-maps from 5’ to lC(R)), such that T f followed
by ’evaluation at l’ gives T f. Note that if f is finite then HomcR(S,03BA(R)) =
HomR(S,03BA(R)).

(iii) Let f : R- S be a morphism in rf ~ js of relative dimension d, and assume
R (and hence S) is formally smooth over k. Using the transitivity of residues
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(cf. 4.2.3) and the identification HdmS(dS/R ~ H(R)) with H(S), we see that
the diagram: 

commutes. Proposition 5.5 below generalizes this to the case where is
not necessarily formally smooth over k, and f R~S induces a finite field
extension of residue fields.

(iv) Let R E Ql be reduced and equidimensional. Let oR be the module of regular
differentials over and H(R) = HdimmR(03C9R) . Then as in [14], (1.1), we have
maps res03C3:H(R)~03C3(03C3) for each a E CR, such that (úJ R, resa) represents
the functor Hom03C3(HdimRmR(M), 03C9(03C3)) of finitely generated R-modules M, and
hence a map ~03C3R: H(R)~03BA(R) such that ter o ~03C3R = res03C3. It tums out that ~03C3R =
01 for cr, T e CR. However, we will only prove this under the assumption that
R is the completion of a local ring at a point of a reduced equidimensional
algebraic k-scheme X (cf. 9.3). Note that if R is formally smooth over k, then
this is part of the definition of a trace structure.

(v) Let RS T be a sequence of morphisms in C, such that the induced map
on residue fields is finite for both f and g (and hence g o f). Then

(vi) Let f: R- S be a morphism in  such that the residue field extension is finite.
Then for 0-dimensional S-modules M, the natural S-map

Homs(M, K(S))~HomR(M, K(R))

(arising from Tf: K(S)~K(R)) is an isomorphism, i.e., (K(R), Tf) represents
the functor HomR(M, K(R» of 0-dimensional S-modules M.

PROPOSITION 5.3. Trace structures exist and are unique up to unique isomor-
phism, i.e., if 1 (K (R), {t03C3})} and {(K’(R), {t’03C3})} are two trace structures, then
there exists a unique farrtily of isomorphisms

such that t’03C3 o J1R = t03C3 for every 03C3 E CR.

Proof. We first prove uniqueness. Fix R E C. For each 03C3 E CR, clearly there is
an unique isomorphism
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such that t’03C3 o PO- = ta. We are done if we show that PT - J1R for a, T E
CR. First assume R is formally smooth over k, and ~R:H(R)K(R) and
0’ : H(R)K’(R) the isomorphism arising from 5.1(b). Then for every or E CR,
it is easy to check that J1R = 0’ o ~-1R. This proves the assertion in case R
is formally smooth over k. For general R E C, let f : S-R be a surjective
map in (t with S formally smooth over k. Let cr, T E CR and let 03C3*,* E Cs
be some lifts of 03C3 and T respectively. Let Tf :K(R)HomS(R, K(S)) and
T’f: K’(R)HomS(R, K’(S)) be the isomorphisms in 5.2(ii). Let J1R: K(R)
K(R’) be given by T’-1f  J1s o Tf. Clearly t’ 01 o J1R == ta and t’ o J1R = tT, and hence
MR == J1R == flR as required. This proves the uniqueness of trace structures.

For R E , consider the collection {K(03C3)}03C3~CR. The maps W§’ of 4.6.1 make
{K(03C3)} into a direct system. Set

Then we have unique isomorphisms /-1a: K(03C3)K(R), one for each u E CR, such
that 03A803C3’03C3 = 03BC-103C3’ 0 03BC03C3. Set ta = e03C3 o ju-1 1 (where, as usual, ea denotes ’evaluation
at l’ ).

For f : S~R a finite map, o, E CR, and T E Cs a lift of cr, define f:K(R) ~
K(S) by the formula

(cf. 4.1 (h) for definition of 03B303C3). Theorem 4.8 says that T f is well-defined. Clearly
tT o T f = tua. This proves the existence of a trace when f is finite.
Now suppose f : S~R is a morphism in in rf. Let 03C0: A- S be a surjective map

in Ql with A formally smooth over k. The map f 0 7r has a factorization (B, ~, 03C8),
and hence we have a commutative diagram (with P = B ~A S and g o 03C0’ = 03C8).

Since all horizontal arrows are surjective, traces for them are defined.
Further K(A) can be identified with MA Alk (where n - dim A and
g = tr.degk(A/m,4) and K(B) can be identified with Hn+dmB(n+d+qB/k) =
HdmB(dB/A ~ K (A». Define an A-linear map Tfo1r: K(R)~K(A) by the formula
f03C0 = resB/A 0 03C0’ o Tg. For cr E CA, the ’transitivity of residues’ formula 4.2.3
gives the relation ta o 7-yo7r = t f01roa, whence 7yo7r depends only on the algebra
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structure of A-R. Using 3.7, 3.7.1 and 3.7.2 we see that Tfo1r takes values in
the image of 03C0. Since T1r is injective, this gives an S-linear map f: K(R)~K(S).
From the construction ofry, the relation t03C3 f = t f oa is immediate for a E Cs. It
follows that T f is independent of the surjective map 7r: A~S. Thus trace structures
exist. 0

5.4. REMARKS

(a) Observe that if J1R is as in the proposition, and is formally smooth over k,
then J1R o ~R = ~’R where OR: H(R)K(R) and 0’ : H (R) -K’(R) are as
in 5.1 (b).

(b) If f: S-R is in rf, then 03BCS o ry -7»’ o J1R, where T f and T f are as in 5.1 (c).
PROPOSITION 5.5. Let f : R~S be a formally smooth morphism of relative
dimension n in rf. Then there exists a unique isomorphism

such that f  1jJ f = res SIR.
Proof. Follows from 5.2(vi) and 3.12(a). 

6. Construction of the residue complex

Fix a trace structure {((R), {t03C3})}.

6.1. CONVENTIONS

(a) For lY an algebraic k-scheme, x a point in X, and R = 8 X,x, we write K(x)
for K(R), ex for CR, çlz for OR etc. If x is a smooth point, we write H(x) for
H(R).

(b) If f: U-V is a map of algebraic k-schemes, then for u E U which is closed
in the fibre f-l f(u), the map K(u)~K(f(u)) of 5.1 (c) will be denoted () f,u.

6.2. CONSTRUCTION

Let X be a connected algebraic k-scheme of dimension n and let 0394X = A : X~Z
be the codimension function 0394(x) = -dim{x}- for x E X. Let KpX be the
injective OX-module given by

We intend to define a coboundary map 03B4 on the graded module ~p~Z KpX so
that (/(x, 8) becomes a residual complex.

First assume X is smooth. Then by property (b) of a trace structure, we have a
canonical isomorphism ~x: H(x)K(x) for each x ~ X. Let E be the Cousin
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complex E(03A9nX/k)[n]. Then E is a residual complex, and for x E X, E(x) =
H(x). Further, the codimension function associated to E8 is precisely 0394X. Thus
for p E Z, we have an isomorphism

Define 6P: KpXKp+1X in the obvious way, viz., 03B4p = ~p+1 o 03B4pE o (~p)-1, where
bÉ, is the coboundary on E. We thus get a residual complex (KI, b) isomorphic
to E*, when X is smooth.
We now construct the coboundary map b on EBpEÍZ KpX for general X.
Let x 1 ~ x2 be an immediate specialization in X. We define an OX,12 -homo-

morphism 8( xl, X2): K(x1)~K(x2) as follows:
Case 1. Suppose we have a closed immersion g:X~Y with Y a smooth k-

variety. Let Il) be the complex just constructed. Let J = gbKY, where, as
usual, if iF’ is an OY-injective complex, then gbF is the OX-injective complex
corresponding to the complex of g*OX-modules HomY(g*OX,KY). J is clearly
a residual complex.

For x E X, set y = g( x ), R == X,x and S = Y,y. From the definition of J,
one has a canonical identification of J(x) with HomS(R, K(y)). On the other hand,
By,x: K(x)~K(y) induces an isomorphism 0398g,x:K()Homs(R,K(y))= J(y)
(cf. 5.2(ii». The differential on Je gives us amap d(xl, X2): J(x1)~J(x2), whence
(via 89,xl and 0398g,x2) a map 8g(XI, X2): K(x1)~K(x2).

Next we prove that if h: X - Z is another closed immersion with Z smooth, then

03B4g(x1,x2) = 03B4h(x1, x2). We may assume (by replacing Z by Y k Z if necessary)
that there is a smooth map 03C0:Y ~ Z such that 03C0  g = h. If W = X Z Y
and p : W~X, h’: W-Y the resulting projection maps, we have a commutative
diagram (with the square being cartesian)

with h’ o i = g and p o i = identity. It is immediate that i : X - W is a closed immer-
sion, and that the ideal sheaf of X is generated (locally) by a regular sequence.

For the immediate specialization x ~ X2, let wi - W2, YI ~ y2 and zl ~ Z2
be the corresponding immediate specializations in W, Y and Z respectively. Let
s1, ... , sd E OW,u,2 generate that kemel of the surjection OW,w2~OX,x2. We
may assume that s1,...,sd is a regular system of parameters for the algebra
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W,w2/X,x2. Lifting s1, ... , sd to OY,y2 (and denoting the lifted elements also
by s1, ... , sd) we note that si, ... , sd are a system of parameters for ÔY,Y2 /Z,z2·

Fix j ~ {1,2}, and letQj = W,wj, Rj = X,xj, Sj = Y,yj andTj = Z,zj.
One sees that Qj = Rj[|s1,...,sd|] and Sj = Tj[|s1,...,sd|], (with s being
analytically independent in both cases) and the maps Rj~Qj, Tj~Sj (induced
by p: W~X and 7r: Y~Z), are the natural inclusions of coefficient rings in power
séries rings.

Let m = dim Z, so that dimY = m + d. Let 03C8:K(x1)~H(z1) be the map
~-1z1 o Bh,xl. Let 03B4(y1,y2): H(y1)~H(y2) and 03B4(z1,z2):H(z1)~H(z2) be the
maps arising from the Cousin complexes E(03A9m+dY/k[m + d]) and E(03A9mZ/k[m]).
Let /-1j: H(zj)~H(yj) be the map

where t is a system of parameters for OZ,zj. Using the fact that

5.2 (iii) and (v), we are reduced to showing the following:
For 03BE E À§(xi );

Let 03C8(03BE) = 03C9/t0 t1,...,tr ] where w E S2"2 - we are using the notations in 1.1. Then,
using 1.1.1, we have
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as required. Thus 03B4g(x1,x2) = 03B4h(x1,x2). Call the common value 03B4(x1,x2). It is
nowimmediatethatif8P = 03A3x1~x2 03B4(x1,x2):KpX~Kp+1X then 03B4p+1 o8P = 0 so
that we have a differential 03B4 making Kx a residual complex.
REMARK. One checks, easily, that for U open in X, KU = Kx U. In fact, if
g:X~Y is a closed immersion with Y smooth, then there exists an open sub-
scheme V of Y such that g-1(V) = U, and hence there is a closed immersion
gu: U~V induced by g. Since E(03A9rY/k[r])| 1 V = E(03A9rV/k[r]) where r = dimY,
the assertion follows.

Case 2. Now let X be an arbitrary algebraic k-scheme. Pick an open neigh-
bourhood U of x2 in X which admits a closed immersion into a smooth vari-

ety, so that the complex KU can be defined. Define 03B4(x1,x2):K(x1)~K(x2)
as the map induced by the differential in KU. By the remark above, 03B4(x1,x2)
does not depend on the open neighbourhood U of x2. One checks that if 8P =

03A3x1~ x2 03B4(x1,x2):KpX~Kp+1X, then 03B4p+
1 o8P = 0 for all p ~ Z. The resulting

complex is clearly residual (since it is so locally).
6.3. REMARK

(i) As before, for U an open subscheme of X, Kx U = Kü. In fact, the collection
K = [KX|X is an algebraic k-scheme} forms a Zariski sheaf of complexes,
i.e., JC8 is a residual (9-complex in the sense of [29]. For an open immersion
g: U~V, the restriction isomorphism (3g: g*KVKU is given by 03B2g(u) =
03B8-1g,u for u ~ U.

(ii) Let f : X~Y be a closed immersion. Then the maps 03B8f,x: K(x)~K(f(x)) (for
x E X) give a map (of complexes) 03B8f : f*KX~KY such that the resulting map
0398f: KX~fbKY is an isomorphism of complexes. To see this we reduce to the
case where Y admits a closed immersion g : Y~Z where Z is smooth, and use
the identity 03B8g,f(x) o 03B8f,x = 03B8gf,x for each x E X (cf. 5.2 (v)). Again details
are left to the reader.

7. Trace in the absolute case

Let x E X be a closed point, and 03C303C3:k~OX,x, the natural map. Set 03B8x =
t03C3x:K(x)~k.
PROPOSITION 7.1. For X proper, the map

is the zero map, and hence

is a map of complexes.
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Proof. First assume X is smooth of dimension n. Identifying KX with

E(03A9nX/k[n]), the proposition follows from 2.2.1.
Next assume there is a closed immersion 1: X-Y where Y is smooth and

proper. As in 6.3 (ii) we have a map of complexes 0j : i*KX~KY, whence a map
of complexes Oy o r (Y, 03B8i): 0393(X, KX)~k. Since ()g(x) 0 03B8i,x = 03B8x, the proposition
follows in this case also.

Finally, let X be proper, and x E X be such that dim{x}- = 1 (i.e., 0394(x) =
-1). We have to show that 03A3s~y 03B8y o 03B4(x, y) = 0. Let Ix be the ideal sheaf giving
the reduced structure on lx 1 -, and for n ~ N, let Zn be the 1 -dimensional algebraic
k-scheme defined by Inx. Let gn : Zn~X be the natural closed immersion, and xn
the unique pre-image of x under gn. For y an immediate specialization of X, let
Yn E Zn be the closed point corresponding to y. By [6] §22, §25, we may assume
that Zn is projective, whence 03A3yn03B8yn o 8(xn, Yn) = 0 by our previous case. The
proposition follows by taking direct limits as n~~. D

From now on, for X proper, let 03B8X : 0393(X, KX)~k be the k-linear map given by
the last proposition. Note that for x a closed point of X, (K(x), 03B8x) represents the
functor Homk(M, k) of 0,,,-modules of 0-dimensional support; in other words,
(KX, 03B8X) is a pointwise residue pair [28], p. 114. By 1.7 we see that (lCx, 03B8X) is
a residue pair. More precisely, with Ipl - Spec k, we have:

THEOREM 7.2. The map 03B8X : 0393(X, KX)~k induces an isomorphism.

8. Trace for proper morphisms

Let f: X-Y be a morphism of algebraic k-schemes. For each E X which is
closed in the fibre f-l f(x), we have a map 03B8f,x: K(x)~K(f(x)) as in 6.1(b).
We extend the definition of 0j,z to points x E X which are not closed in their
fibre by setting 03B8f,x: K(x)~K(f(x)) equal to zero in this case. One checks that
B f: f*KX~KY given by 03B8f = 03A3x~X03B8f,x is a map of graded OY-modules. The
main result of this section is:

PROPOSITION 8.1. If f is proper, then 03B8f: f*KX ~ KY is a map of complexes.
The proof in carried out in 8.4. We need some preliminary material.

8.2. CURVES OVER ARTIN LOCAL RINGS

Let S = SpecA, A E ctk an Artin local k-algebra. Let 03C0:PnS~S be the structural
map. Let I = K (A). Define
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Let

be the map of complexes defined in 2.2.1. For a proper irreducible S-scheme
f : C~S of dimension 1, there is a closed immersion of S-schemes i: C~P = PnS
for some n ~ N. Indeed an ample invertible sheaf on the closed fibre over S
can be lifted to an invertible sheaf on C via [9], p. 224, (4.6), and this sheaf must
necessarily be ample on C by ibid., p. 232, (5.7)(d). For c ~ C if R(c = JC( 8c,c),
x = i(c), then we have a natural map

given by our trace structure. In fact, using the fact that R(c)
Hom OP,x (OC,c, KP(x)), we can string together the R(c) (as c E C varies) to
get a residual complex RC, such that

is a map of complexes.
In this situation we have the following Proposition, whose easy (though tedious)

proof we leave to the reader (cf. Sect. 6 for the techniques involved).

PROPOSITION 8.2.3. With notations as above, suppose g: X -7 Y is a proper
map of relative dimension one of algebraic k-schemes, and suppose A = OyV
for some y E Y, C = S Y X, and f : C-7S the projection. Let h: S~Y be the
natural map and h’: C~X the projection on to X. In this situation

where d = dim Y, and ’{-d}’ denotes translation to the right by d units without
changing the signs of the coboundary maps.

One immediate consequence is the following Lemma, in which all schemes
mentioned are algebraic k-schemes.

LEMMA 8.3. Let g: V~W be proper, surjective, with V irreducible. Let v E V
be the generic point of V and let w = g(v). Suppose A (v) = A (w) - 1 then the
composition

is zero, where the direct sum is over v’ E g-1(w) with v ~ v’.
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Proof. Let A = OW,w, S = SpecA and h: S-W the natural map. Let C =
6’x’ V, f : C~S and h’: C -V the two projections. C is irreducible of dimension
one. For f : C- S we use the notations in 8.2. By Proposition 8.2.3 the complex
0393(C,RC) is precisely

and the map 03A303B8g,w’ is induced by the map of complexes 03B8PnS o 03B8i: r ( C, RC)~I =
K(w). The Lemma follows. 

8.4. Proof of Proposition 8.1.
Case 1. If f is a closed immersion, then we have already seen that the proposition

is true [cf. 6.3(ii)].
Let Y’ be the scheme theoretic image of f, and XY’Y the resulting

factorization of f. One checks that 0j = 03B8i o i*03B8f’. By case 1, Bi is a map of

complexes, and hence we are reduced to showing that 03B8f’ is a map of complexes.
So we may assume that f: X -Y as in the proposition is surjective.
Case 2. Let Y be smooth of dimension n, and f smooth of relative dimension

d. We identify K00FF with E(03A9nY/k[n]) and KX with E(03A9n+dX/k[n + d]). Then we
have a map

as in [16], (4.2) (there the map f is denoted (SpecX/Y k) ). Combining this with
Proposition 2.1 we get a morphism of complexes

The definition of 03C1f along with [23], Proposition (4.2.2) and 5.2 (iv) gives the result
in this case.

Case 3. Suppose f : X~Y is finite and surjective. First, assume Y is projective,
(so that X is also projective). Let g : Y~Pn and h : X~Pm be closed immersions.
Set Z = TIDnx k Pl. Then we have a commutative diagram
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with p : Z~Pn the canonical projection, the square cartesian, and g’ o 1 = h. We
already know that Bi, Bgl, Op and 0g are morphisms of complexes. Now 03B8f =
oq o q*03B8i, and hence it is enough to prove that Bq is a map of complexes. Note
that Bg ? g*03B8q = OP o p*03B8g’, and the right side is a map of complexes. Since

03: g*KjY~KjPn is an inclusion and g is an affine map, it follows that 03B8q is a map
of complexes, and hence so is 03B8f in this case. Now assume Y is quasi-projective
instead of projective. Let j:Y~Y be a projective compactification of Y. By
Zariski’s Main Theorem we can find a cartesian square

with the horizontal arrows being open immersions, and with f finite. It is easy to
see that Of = j*03B8f, and hence Of is a map of complexes.
Now let f: X~Y be an arbitrary finite surjective map. Since Y can be covered

locally by quasi-projectives, and since the question is local, therefore, by the above
arguments, Of is a map of complexes.

Case 4. We now prove the Proposition for a general proper map f : X~Y. Let Y’
be the scheme theoretic image of f, and XY’Y the resulting factorization
of f. One checks that Bj = 03B8i o i*03B8f’. By case 1, 0j is a map of complexes, and
hence we are reduced to showing that 03B8f’ is a map of complexes.

So we will assume, without loss of generality, that f : X - Y as in the proposition
is surjective. Let x E X, y = f(x), y’ E Y, A = tx’ E f-1(y’) | x ~ x’}. We
have to show that

where 8(y, y’) = 0 if y’ is not an immediate specialization of y. We do this in two
stages.

First assume x E X is closed in its fibre. If y’ is not an immediate specialization
of y, then by reasons of codimension (cf. [7], p. 333, Proposition (3.4)), none of
the x’ E A are closed in their fibres and so 8.4.1 trivially holds. So assume y - y’.
Then by loc. cit., all x’ E A are closed in their fibre. Let p C OX be the ideal sheaf
of {x}-. Let Zn be the closed subscheme of X given by pn and in : Zn~X the
inclusion. Let gn : Zn -Y be the composition f o in . By [5], 4.4.11, there is an open
neighbourhood U of y’ such that the restriction of f to gn 1 ( U ) is a finite morphism
into U. A little thought shows that U is independent of n. By replacing Y by U
if necessary, we may assume that gn : Zn -Y is finite. Let zn E Zn be the point
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corresponding to x ~ X , and 039Bn = {x’n E gn 1(g’)| 1 Xn r--t xn}’. S ince gn : Zn-Y
is finite, the previous cases give

8.4.1 follows by passing to the direct limit.
Now suppose x E X is not closed in its fibre. We are reduced to showing:

If y’ ~ y, then no x’ E A is closed in f -1 (y’) (apply [7], p. 333, (3.4)), and hence
8.4.2 holds. So assume y’ = y. If 0394(x) ~ A(y) - 1, then again by loc.cit. - no
x’ E A is closed in its fibre, and hence 8.4.2 holds. So we are reduced to the case
where y’ = y and 0394(x) = A (y) - 1. Let I c OX be the ideal of {x}- (with
reduced structure). Let Vn be the closed subscheme of X defined by yn. We have
a commutative diagram

where Wn is the scheme theoretic image of Vn in Y, and in, jn, gn are the induced
maps. Since 0394(x) = 0394(y) - 1, the map gn : Vn~Wn satisfies the hypothesis of
Lemma 8.3. If Vn E Yn is its generic point, wn = gn(vn), then 8.3 gives

where the sum is over v’ E gn 1(wn), with vn - v’. Passing to the direct limit (as
n~~), we get 8.4.2. 

8.5. REMARKS

1. If Y is Spec in the Proposition, then identifying K(k) with k in the obvious
way (i.e., via t03C3 where o,: k~k is the identity map), we have 03B8f = 03B8X.

2. Let XYZ be a pair of proper morphisms. Then 03B8g o g*03B8f = 03B8gf. In
particular, if Y is proper over k, then 0y o r (Y, f) f) = Ox.
For f: X-Y a proper map of algebraic schemes, let (f!, f) be as in [30],

Theorem 1. This pair is unique up to unique isomorphism. Clearly if Y = Spec k,
then we can identify (f!k,f) k) with the pair (QKX, Q Ox ) where Q denotes both
localization functors K(X)~D(X) and k(Y)~D(Y). This is the content of
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Theorem 7.2. This has the following generalization (we are identifying QKX with
Kx, OKY with KY R f*KX with f*KX, and QOf with Bf).
THEOREM 8.6. Let f : X~Y be a proper morphism of algebraic k-schemes. The
pair (f!KY, f K00FF) is isomorphic to the pair (KX, 03B8f).

Proof If Y is proper, the theorem follows from the identity 03B8Y o 0393(Y, 03B8f) = 03B8X
and the universal properties of 03B8X and 03B8Y. In general, one can compactify the map
f : X~Y, i.e. get a cartesian square:

with X, Y proper over k and i, j open immersions (cf. [21], p. 50). Since 03B8f = j*03B8f,
the theorem follows from [30], Theorem 2. 

8.7. REMARK. From the construction of Of for a proper map f : V-W of
algebraic k-schemes, it is clear that (1(8, {03B8V}) gives a dualizing structure on the
0-modules K (defined on the Zariski site on the category of algebraic k-schemes)
(cf. 0.1 in the Introduction).

9. Connections with Yekutieli’s complex

In this section we show that for X equidimensional and reduced, KX is essentially
the complex constructed by Yekutieli in [31] (cf. 9.2 below). We will work over
vred - the category of reduced, equidimensional, algebraic k-schemes and we point
out that the results of [29] are valid in this category (cf. Remark 0.2.12 of ibid.)5.
We deduce a relationship between regular differential forms of the top degree
and 1(1-, analogous to Theorem 0.2.2 of [29] (Theorem 9.3 below). We assume
familiarity with the language of 0-modules as laid out in [21], pp. 28-30.

By Remark 6.3, we see that {KX:X E 03BDred} is a Zariski sheaf on vred.
We denote this Zariski sheaf K*. Moreover, one checks that the data (K, {03B8X},
{03B3X}, (0 j) ) gives a residue complex on vred (in the sense of [29] (1.4)), where
1 x, for X smooth, is defined as follows: If n = dim X, we identify KX with

E(03A9nX/k[n]) (via ~x, x E X), whence we have a natural quasi-isomorphism
03A9nX/k[n]~KX. We denote this quasi-isomorphism by 03B3X.
9.1. REMARK. If (C,{(-1)dimXTrX},{CX},{Trf}) is the Yekutieli residue
complex on vred, i.e. the residue complex of [29], Theorem 0.2.2, then for X E vred,

5 However in the definition of a canonical structure in ibid., 1.3, care must be taken to identify
03B8f for all finite dominant maps (not just generically étale ones). This is done by using the trace in
[20] §16. The generalization is routine and straightforward.
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and E X, we can identify K(x) with G(x). This is an obvious consequence of
4.7 and the definition of K(x). Thus KpX = CpX for p E IZ.

By [29], (1.2.6), (1.3.4) and (1.4.3) we have a unique isomorphism of complexes
of O-module

which preserves the dualizing and canonical structures of K and C. The main
theorem of this section is

THEOREM 9.2. For X E vred, the isomorphism

satisfies

for each p E IZ, where 1 KP x is the identity map on KpX = CpX.
Proof. If X = llDd, the projective space of dimension d over k, the theorem

follows from [29], (0.2.11).
It is enough to prove the proposition for X projective, for then it would be true

for X quasi-projective, and hence for all X (by finding an open cover by quasi-
projectives). Let f : X~Pd be a noether normalization (d = dim X ) comparing the
definitions of 03B8f in the beginning of Section 8 with the definitions of Tr f in [31],
4.4.11 (a), we see that for p E Z, 03B8pf = Trj. On the other hand the diagram

commutes. This implies that for x E X, with dim {x} = -p, and y = f(x), the
diagram of R = Ôpd y-modules
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commutes. The assertion follows from the fact that, with S = X,x, the natural
map

given by 03B8f,y, is an isomorphism. 
Since K has a canonical structure, the O-module 03C9 = H-dim(K) is a canonical

O-module in the sense of [21] pp. 32-33 (where dim is the ’dimension sheaf’ on
vred), For X E vred if we identify wx with a subsheaf of 03A9dim Xk(X)/k via the map
03B3Xsm : 03A9dim XXsm ~KX (where Xsm is the smooth locus of X), then clearly wx = Wx
- the sheaf of regular differential forms of highest degree on X. The map 1 Xsm
extends to give a map -yx: wx [dim X]~KX. In fact we get a map of complexes of
0-modules

For x E X, 03C3 E C,, let resa : Hdx(X)~03C9(03C3) be the residue map in [14] (1.1),
where d = dim X,x. Theorem 9.2 and [29] 0.2.11 gives the following result
(compare with 5.2 (iv)):

THEOREM 9.3.
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