@article{CM_1996__101_2_217_0, author = {Demailly, Jean-Pierre and Peternell, Thomas and Schneider, Michael}, title = {Compact {K\"ahler} manifolds with hermitian semipositive anticanonical bundle}, journal = {Compositio Mathematica}, pages = {217--224}, publisher = {Kluwer Academic Publishers}, volume = {101}, number = {2}, year = {1996}, mrnumber = {1389367}, zbl = {1008.32008}, language = {en}, url = {http://archive.numdam.org/item/CM_1996__101_2_217_0/} }
TY - JOUR AU - Demailly, Jean-Pierre AU - Peternell, Thomas AU - Schneider, Michael TI - Compact Kähler manifolds with hermitian semipositive anticanonical bundle JO - Compositio Mathematica PY - 1996 SP - 217 EP - 224 VL - 101 IS - 2 PB - Kluwer Academic Publishers UR - http://archive.numdam.org/item/CM_1996__101_2_217_0/ LA - en ID - CM_1996__101_2_217_0 ER -
%0 Journal Article %A Demailly, Jean-Pierre %A Peternell, Thomas %A Schneider, Michael %T Compact Kähler manifolds with hermitian semipositive anticanonical bundle %J Compositio Mathematica %D 1996 %P 217-224 %V 101 %N 2 %I Kluwer Academic Publishers %U http://archive.numdam.org/item/CM_1996__101_2_217_0/ %G en %F CM_1996__101_2_217_0
Demailly, Jean-Pierre; Peternell, Thomas; Schneider, Michael. Compact Kähler manifolds with hermitian semipositive anticanonical bundle. Compositio Mathematica, Tome 101 (1996) no. 2, pp. 217-224. http://archive.numdam.org/item/CM_1996__101_2_217_0/
Equations du type Monge-Ampère sur les variétés kähleriennes compactes. C. R. Acad. Sci. Paris Ser. A 283 (1976) 119-121; Bull. Sci. Math. 102 (1978) 63-95. | MR | Zbl
:Variétés kähleriennes dont la première classe de Chern est nulle. J. Diff. Geom. 18 (1983) 775-782. | MR | Zbl
:Sur les groupes d'holonomie des variétés à connexion affine des variétés riemanniennes. Bull. Soc. Math. France 83 (1955) 279-330. | Numdam | MR | Zbl
:A relation between volume, mean curvature and diameter. Amer. Math. Soc. Not. 10 (1963) p. 364.
:On the decomposition of Kähler manifolds with trivial canonical class. Math. USSR Sbornik 22 (1974) 580-583. | MR | Zbl
:Kähler manifolds with trivial canonical class. Izvestija Akad. Nauk 38 (1974) 11-21. | MR | Zbl
:G.: T-symmetrical tensor forms on complete intersections. Math. Ann. 288 (1990) 627-635. | MR | Zbl
and -Fundamental group and positivity of cotangent bundles of compact Kähler manifolds. Preprint 1993. | MR | Zbl
:The splitting theorem for manifolds of nonnegative Ricci curvature. J. Diff. Geom. 6 (1971) 119-128. | MR | Zbl
and :On the structure of complete manifolds of nonnegative curvature. Ann. Math. 96 (1972) 413-443. | MR | Zbl
and :Kähler manifolds with numerically effective Ricci class. Compositio Math. 89 (1993) 217-240. | Numdam | MR | Zbl
, and :Compact complex manifolds with numerically effective tangent bundles. J. Alg. Geom. 3 (1994) 295-345. | MR | Zbl
, and :Recent results in complex differential geometry. Jber. dt. Math.-Verein. 83 (1981) 147-158. | MR | Zbl
:Topics in complex differential geometry. In DMV Seminar, Vol. 3., Birkhäuser 1983. | MR | Zbl
:Variétés kähleriennes et première classe de Chern. J. Diff. Geom. 1 (1967) 195-224. | MR | Zbl
:Variétés Kählériennes à première classe de Chern non négative et variétés riemanniennes à courbure de Ricci généralisée non négative. J. Diff. Geom. 6 (1971) 47-94. | MR | Zbl
:Birational invariants of algebraic varieties. Preprint Institut Fourier, no. 257 (1993). | MR
:The formal Hodge filtration. Invent. Math. 31 (1976) 193-228. | MR | Zbl
:On the Ricci curvature of a complex Kähler manifold and the complex Monge-Ampère equation I. Comm. Pure and Appl. Math. 31 (1978) 339-411. | MR | Zbl
: