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Let K/k be a finite Galois extension of number fields with Galois group G, and
let S be a finite G-invariant set of primes of K which contains all the archimedean
primes. This paper is concemed with deriving an exact sequence

of finitely generated ZG-modules, in which E is the group of S-units of K, A is
cohomologically trivial, B projective, and V is uniquely determined, in a sense
stronger than isomorphism, by Il and S.

Such an exact sequence has been constructed by Tate [TN,TS], but only under
the assumption that S is large, in the sense that the S-class number of K is 1

and that all ramified primes of K/k are in S. In this case V has a very simple
description: writing 7,S for the permutation G-module with Z-basis S, then ~ is
the kemel

of the augmentation map ZS - Z, which sends every element of S to 1.
Our interest in Tate sequences comes from the observation that they enable the

cohomological methods of class field theory to be used in the study of the G-module
structure of E. In [GW], the Tate sequence is applied to discuss invariants of the
ZG-genus of E. If S is large, then more precise invariants of the location of E in
its genus have been considered [RW] assuming, e.g., that E is totally real and G
has odd order.

When S is not large, then V tums out to be considerably more complicated than
OS. It is given by an exact sequence of G-modules

where cl is the S-class group of K and where V is a ZG-lattice rather like AS
but incorporating also some ramification-theoretic information about the set Sram
of ramified primes of K/k which are not in S. Finally the extension class of the

* The authors acknowledge financial support provided by the DFG and by NSERC.
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above exact sequence four 17 is uniquely determined. In fact, it can be explicitly
described in terms of the exact sequence

of Galois groups, where  is the Hilbert S-class field of K, hence G(K/K) ~ cl.
Surprisingly, the proof of this makes essential use of global Weil groups.

1. Constructions and results

We fix the notation of the introduction. In particular, since the set S will not vary, we
continue to not display it in our notation (so the K in CK is to suggest independence
from S). The purpose of this section is to sketch the main construction, to formulate
some of the problems it raises and to outline our results on these problems. The
actual proofs start in Section 4, with Section 2, Section 3 providing some necessary
background.
We fix, for now, a choice * of a representative for each orbit of the action of

G on the primes of K. Many of the objects we consider will depend on * but, for
the sake of eventual clarity, we delay the discussion of this dependence to the end
of this section. Let S*, for a set S of primes of K, denote the intersection of S
and *.

We begin the construction by choosing a finite G-invariant set of primes S’,
containing S and larger in the sense that:

(i) the S’-class number of Il is 1
(ii) S’ contains all primes which ramify in K/k

(iii) U Gp = G, where Gp is the decomposition group of p in K/k.
p~S’

Such a set S’ exists, by the Tchebotarev density theorem, and we will need to
discuss the independence of our results from its choice, for which reason S’ is
explicitly kept in our notation.

The augmentation sequence 0~0394G~ZG~Z~0 induces an isomorphism
03B4’ :H1(G, Hom(0394G, CK))~H2(G, Hom(Z, CK)) = H2(G, CK), since Hom(EG,
CK) is cohomologically trivial. So there is a unique a E H1(G, Hom( 0 G, CK)) ==
Ext1G(0394G, CK) with bla - UK/k, the global fundamental class. We choose an exact
sequence

of G-modules with extension class a.
For p e S*, there is, locally, an analogous exact sequence

of Gp-modules with extension class 03B1p E H1(Gp, Hom(0394Gp, K p)) =

Ext1Gp(0394Gp, K p) satisfying 03B4’03B1p = uKp/kp, the local fundamental class in

H2(Gp, K p).
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For p E S’*, p e S* we use a different local sequence with Il§ replaced by Up,
the units of Kp By [GW], which is reviewed in Section 3, there is a special inertial
ZGp-lattice Wp and a canonical class (3p E H1((Gp, Hom(Wp,Up)) =

Extbp (Wp, Up). As before, we take an exact sequence

of (9p-modules with extension class (3p.
We apply indGGp to these local exact sequences and take the direct sum of them

over p e S’*. Glueing on the unit ideles of the form 03A0p~S’ Up, we get an exact
sequence

of G-modules,

Here we are identifying the 03A0p~ß K p in J, for a G-orbit B of primes, with
indgp K for p E B*.

There is a canonical G-homomorphism J~CK. For p E S*, the inclusion

0394Gp~0394G of G p -modules induces a canonical G-homomorphism indgpGGp0394Gp~
AG. For p E S’*BS*, Wp comes equipped with a canonical Gp-homomorphism
Wp --+ AG,, which, composed with the map of the last sentence, yields a canonical
WS’~0394G.

THEOREM 1. There exist surjective G-homomorphisms 0 in

diagram 1

with exact rows and maps as described above.

The theorem is essentially due to the matching of the global and local funda-
mental classes. It is proved in Section 4.

Suppose now that 0 is such an epimorphism. Since J-CK has kemel E, the
S-units of Il, and cokemel cl, the S-classgroup of K, the snake lemma gives an
exact sequence
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of finitely generated G-modules, with Ao = ker 0 cohomologically trivial because
Vs, and 0 are (Section 4), and with Rs, = ker(WS’ ~ 0394G) a 7, G-lattice of known
structure. We call this a "Tate" sequence for S*. In Section 4 we describe a process
by which it can be transformed into

where Bs, is a finitely generated stably free ZG-module and B7 B an extension of
cl by a known ZG-lattice ~* which is independent of 0 and S’ (but not of *). The
latter sequence will be referred to as a Tate sequence for S*, since it gives back
Tate’s original sequence [TS, p. 54] provided that S is a larger set.

THEOREM 2. (a) All surjective maps 0 determine the same snake class [s] E
HO(G, Hom(Rs,, cl)). (Here, and always, HO is a Tate cohomology group.)
(b) [~03B8] e Ext1G(~*, cl ) is independent of 0.
(c) The class [A03B8] E K0(ZG) does not depend on 0.

The proof of (a) and (b) is given in Section 5; (c) is shown in Section 6. Its
main ingredients are the vanishing of H1(G, CK) and the relation of Wp to the
decomposition group of /k for the ramified primes p ~ S’*B S* , where 11 is
again the Hilbert S-class field of Il.

REMARK. A finitely generated cohomologically trivial ZG-module A is, up to
stable isomorphism, determined by its Z-torsion submodule and its class [A] in
K0(ZG)[GW,(2.3)].Here[A] = [P1] - [P2] , if 0~P2~P1~A~0 is a projective
resolution for the cohomologically trivial A. It follows from Theorem 2(c) that the
stable isomorphism class of Ao is independent of 0, since Ao has torsion 03BCK, the
roots of unity in K.

So far, the larger set S’ has been kept fixed. Because of Theorem 2 we have
for each larger set S’ a uniquely determined extension class [~S’] e Exth(B7 *, cl).
Equally well, there is a unique stable isomorphism class [As,].

THEOREM 3. (a) If S’ C S" are larger sets containing S, then the natural
inclusion RS’~RS" induces an isomorphism

which takes the snake class for S"* to the snake class for S’*.
(b) [~] = [~S’] E Ext1G(*, cl) is independent of S’.
(c) [As,] - [Bs,] E K0(ZG) is independent of S’.

The proof is given in Section 7.
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Let rs be the number of G-orbits of ramified primes of K/k outside S. Define
the Chinburg class 03A9*m E K0(ZG) by setting

in the notation of Theorem 3(c). The method of proof of Theorem 3 implies the

COROLLARY. 03A9*m E Cl(ZG) is independent of S (but not yet of *).

Each Tate sequence

defines an extension class T e Ext2G(~, E), whose uniqueness we discuss next.
By Theorem 2(b), 3(b) we know that the V which appears in a Tate sequence is
uniquely determined up to admissible G-module isomorphisms, i.e. those which
make

commute. So the strongest uniqueness statement possible appears to be

THEOREM 4. Let T e Ext2G(~, E), T’ E Ext2G(~’, E) be the extension classes of
two Tate sequences for S*. Then there exists an admissible isomorphism h : ~ ~ ~’
which takes T’ to T.

Most of the proof of this, i.e. variation of (), is in Section 6, with the conclusion
in Section 7. So the analogue of Tate’s canonical class [TN] in Ext2G(~, E ) is now
an orbit of the admissible automorphisms of B7.

In addition to problems of uniqueness there is the question of identification of
our objects. We next turn to a description of the snake map s. It is again based on
the Galois theoretic behaviour of primes in the Hilbert S-class extension /k. We
outline the construction.

Galois theory provides, for each p E S’*, a natural commutative diagram

where W(Knrp/Kp), W(Knrp/kp) denote the Weil groups of the maximal unram-
ified extension of K, over K, and kp, respectively (Section 3). By means of the
translation functor t of Section 2, which takes short exact sequences A ~ X -G of
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groups, with A abelian, to short exact G-module sequences 0~A~M~0394G~0,
we get a corresponding diagram

in which the top row is the canonical one (and Z has been identified with

W(Knrp/Kp)) and in which the left vertical map sends 1 e Z to the Artin symbol

. In particular, if p ~ S, then 1 is sent to 1 and so the map Wp~H factors
through a map 0394Gp~H. Consequently, on putting all these diagrams, for p E S’*,
together in the usual way we arrive at a well-defined map à : WS’~H.

THEOREM 5. The restriction of &#x26;: Ws,--*H to Rs, takes values in G(/K)
and, on identifying G(/K) with cl by means of the Artin symbol, is a snake map
cr: Rs, -cl.

This is proved in Section 5. By the construction of the Tate sequence in Section 4,
it follows that the extension class of ~ is also explicitly described by Theorem 5.

Finally we discuss the dependence on the choice * of G-orbit representatives
of primes of K. Let Q be another such choice. For each p distinguished by * let
xp e G have the property that xpp = p’ is distinguished by 0. Such a system X
of elements of G gives a transport X : * - O. This means that it induces natural
G-module transport maps X : W*~ Wo , V* - Vo (where S C S’ are now
suppressed in the notation); these maps X are described at the end of Section 4,
with some preparation at the end of Section 3.

Define X -admissible isomorphisms h between two V to be those which make

commute. These allow the formulation of

THEOREM 6. Assume a transport X : * - 0 has been chosen.

(a) The transport map X : ~* ~ B7 0 carries the extension class [~] E

Exta1G(, cl) to [~*] E Ext1G(~*, cl).
(b) Let T* E Ext2G(~*,E), 03C4 E Extb(B70,E) be the extension classes of Tate

sequences for S*, So respectively. Then there exists an X -admissible isomor-
phism which takes 03C4 to T*.

(c) 03A9*m = 03A9m.
The transport part of the proof is in Section 8, which is really a reduction to a

suitable generalization of Theorem 4 in Section 6.
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It now follows that the Chinburg class nm = 03A9m(K/k) depends only on
Klk; this generalizes Theorem 3.1 of [C] to arbitrary sets S. 03A9m coincides with
Chinburg’s original class by [CB], because the construction there is essentially the
same as ours for larger S.

Since ~* = AS for large S, which is independent of * , transport then does
not need to be explicitly mentioned in the conclusions. For this reason it would be
helpful to have, for arbitrary S, a "canonical model" for (the homotopy equivalence
class of) V*, which is independent of *. Theorem 6 is presently our only evidence
for its existence.

2. Diagrammatic methods

The following terminology is convenient and useful. By H03B3(G, M) we always
mean Tate cohomology for a finite group G : thus H0(G, Z) = Z / 1 G 17,. We
call G-homomorphisms s’, s : M-N homotopic (notation: s’ ~ s) if s’ - s :
M~N factors through a projective ZG-module. We write [M, N] for the group of
homotopy classes of G-homomorphisms.

LEMMA 1. (a) [M, N] = H’(G, Hom(M, N)) if M is a 7,G-lattice.
(b) Let M be a G-module, M’ a 7lG’-lattice, with G’ a subgroup of G. Let

h‘ : M’~M be a G’-homomorphism and h : indGG’ M’~M the induced G-
homomorphism. Then h ~ 0 if, and only if, hl - 0.

Proof. (a) see, e.g., (5.1) of [GW]. (b) follows from (a) and Shapiro’s lemma.

To describe the diagram manipulations we will need to do, we name the maps
in certain numbered G-module diagrams by the convention

diagram n

of putting the diagram numbers as subscripts in the above pattern, if need be.
Typically c’ and c" will be known maps, the rows will be exact with fixed extension
classes, and the map c will be variable. Diagram 1 is the best example of this. *

If h’, h are two instances of c, then h’ - h = b’ dt for a unique G-homomorphism
d : M" ~ N’, which we call the diagonal deviation from h to h’. And we define
h’, h to be diatopic if d - 0. Clearly the group [M", N’] acts fixed point freely and
transitively on the set of diatopy classes of the c.

LEMMA 2. (a) Let s’, s be the snake maps induced by h’, h, respectively, which
are two instances of c. If d is the diagonal deviation from h to h’ then

* The diagrams are numbered by type rather than strictly in the order in which they appear.
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where j" : ker c"---+M" , j’: N’~coker c’are the natural maps. In particular,
if h’, h are diatopic then s’ - s.

(b) Given a diagram n, as above, and a map c" : M" ~ N" which is homotopic
to c", then there exists c : M - N, homotopic to c, so that replacing c", c by
", c gives a diagram n.

(c) Given a diagram n, with all modules being 7,G-lattices, and ê’ homotopic to
c’, then there exists c N c, so that replacing c’, c by ê’, c gives a diagram n.

Proof. (a) is clear. For (b) write " - c" = qr with maps r : M" - P, q : P ~

N" and P projective. Since b is surjective, we can find p : P - N with bp = q,
and set c = c + prt. For (c), take the Z-dual of the diagram, apply (b), and then
take 7,-duals again.

The translation functor t, which is introduced in [G,10.5], is actually a pair
of mutually inverse functors between categories G and GM, which we describe
next.

The objects of G are group extensions A - X~G of a (finite) group G by an
abelian group A. The morphisms of G are triples of group homomorphisms which
form the vertical arrows in a commutative diagram

The objects of GM are pairs (G; 0 ~ A ~ M - 0394G ~ 0) consisting of a
(finite) group G and an exact sequence of G-modules 0 - A - M~0394G~0 in
which AG is the augmentation ideal of ZG with natural G-action. The morphisms
of GM are again triples of vertical arrows making the diagram

commute, but now we insist that k is induced by a group homomorphism k: G’~G
and that our vertical arrows are G’-homomorphisms when we view G-modules as
G’-modules via K.

PROPOSITION 1 [G]. G and GM are naturally equivalent. The equivalence is
given by the functors t : G  GM and t : GM  G described below.

Given A - X~G in G, we derive in due sequence 0 - 0394(X, A)
ZX ~ ZG ~ 0, 0 ~ 0394(X, A) ~ 0394X ~ 0394G ~ 0 and 0~0394(X,A) 0394(X,A)0394X ~
0394(X) 0394(X,A)0394(X) ~0394G~0. The respective modules are viewed as left G-modules by let-
ting g e G act by left multiplication by any preimage x E X . The map a - a - 1
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induces a G-isomorphism from A (with g e G acting by conjugation by x) to

0394(X,A) 0394(X,A)0394X; an inverse is induced by the mapping (a - 1 )r ~ a on the Z-basis
{(a - 1)r : 1 ~ a E A, X = ~r. Ar (disjoint union)} of A(X, A). Using this as
an identification we define t of A ~ X ~ G to be (G; 0 ~ A ~ AX
0394G ~ 0). 

Conversely, given (G; 0 ~ A~ M - 0394G ~ 0) in GM we form semidirect
products to get the exact sequence of (multiplicative) groups

Now g - (g - 1, g) is a group monomorphism G- AG x G. The pullback of
the above sequence with respect to it gives A ~ X-G with X = {(m, g) E
M x G : m has image g - 1 in AGI, which we define to be the t-translate of
(G;0~A~M~0394G~0).

It is clear how to define t on morphisms.

We need to check the compatibility of t with extension classes in the usual
sense. If A is a G-module, then applying Hom(·, A) to 0 ~ 0394G~ZG~Z~0 and
taking cohomology induces isomorphisms

because Hom(7,G, A) is cohomologically trivial.

LEMMA 3 Let 03BE E H1(G, Hom(0394G, A)) be the extension class of the G-module
sequence 0~A~M~0394G~0. Then 03B4(03BE) E H2(G, A) is the extension class of
the t-translate A - X~G of (G; 0 ~ A - M - AG - 0).

Proof. We include this instead of a list of our conventions. Letting g ~ eg E
Hom(A G, A) be a 1-cocycle representing ç, we compute a 2-cocycle representing
03B4(03BE). Taking tg E Hom(EG, A), defined by g(g’) = 03BEg(g’ - 1) for g’ E G, as a
preimage of 03BEg, then g,g’ = gg’ - gg’ + g belongs to Hom(F,, A). Identifying
this with A we find that

gives a 2-cocycle (g, g’) - g,g’ representing b(e).
Taking Hom(AG, .) and cohomology of our G-module sequence gives

with 03B4(id0394G) =03BE by definition. This means that çg = gr - r for an appropriate
pre-image r E Hom(AG, M) of idAG, i.e. a section r to M ~ AG. From r we
get a section ri of the group extension A  1 ~ M  G-»OG  G by setting
r1(y,g) == (r(y), g), y E AG. Since this induces a section r2 for A ~ X~G, it
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follows that a 2-cocycle (g, g’) ~ 03BE’g,g’ representing this extension is determined
by

Thus 03BE’g,g’ = 03BEg(g(g’ - 1 ) ) gives a 2-cocycle representing the t-translate of

(G;0~A~M~0394G~0).
Now define ag’ = 03BEg’(g’ - 1) ~ A for g’ e G. Then gag’ - agg’ + ag =

03BEg,g’ - 03BE’g,g’, so our two 2-cocycles represent the same element of H2(G, A),
completing the proof.

Finally we need an analogous result for maps. Start from a diagram 0

and let h’, h be two instances of co. Then these two instances of diagram 0 may
be viewed as two morphisms in GM provided h’, h are G’-homomorphisms via
k : G’ ~ G. Taking d to be the diagonal deviation from h to h’ defines an element
[d] E H°(G’, Hom(AG’, A)).

Applying the translation functor to these two morphisms in GM gives two
morphisms in G differing only in the group homomorphisms u’, u : X’ --* X

Then À : G’~ A, g’ ~ u’(x’)u(x’)-1 for any preimage x’ E X’ of g’, defines
a 1-cocycle (cf. [AT, p. 178-179]), which clearly splits precisely when u’, u are
conjugate by an element of A.

LEMMA 4. s : H°(G’, Hom(AG’, A)) - H1(G’, A) takes [d] to - [À].
Proof Taking d E Hom(ZG’, A) so that d(g’) = d(g’ - 1) then 6[d] is

represented by g ~ gd -  e Hom(Z, A) = A, i.e., by g ~ d(1 - g).
Now u(m’, g’) = (h(m’), K(g’)) for (m’, g’) E X’, i.e. t0(m’) = g’ - 1, hence

(d(g’ - 1), 1)u(m’, g’) = u’(m’, g’) and À(g’) = (d(1 - g’),1)-1.

REMARK. We often use the translation functor as a convenience. However, it

appears to be essential for Theorem 5.



157

3. Local considerations

The main part of this section is a review of [GW, Sections 11, 12]. However, using
the translation functor allows us to derive diagram 2p in a way which fits in well
later.

We suppress the subscript p in this section, in order to ease the notation. So
K/k is a finite Galois extension of p-adic fields with group G, which has inertia
subgroup Go. We write - for the map G - G = G/G° to the corresponding
residue field extension, and let p denote the Frobenius generator of G.

Define the inertial lattice of K/k to be the ZG-lattice

We need the following module-theoretic properties of W.

LEMMA 5.

(a) W - 7lG if K/k is unramified.
(b) There are exact sequences

of G-modules.

We choose the map ÍZ -7 W to send 1 to (0, 1 + ~ + ... + ~f-1) , f = IGI.
(c) Let WO = Homz(W, Z). There is a commutative diagram of G-modules

with exact rows. The map W - AG is the canonical one of the first exact
sequence in (b) and W0~Z0 = E is the Z-dual of the map Z~W there.

Proof. (a) is clear, (b) follows from the definition of W by projecting on the
first and second components, respectively. And (c) is Lemma 4.1 of [GWL].

The relationship between W and Galois theory will follow from

LEMMA 6. The t-translate of the first sequence (G; 0 ~ E ~ W ~ AG - 0)
of Lemma 5(b) is the group extension

up to canonical equivalence of extensions, with G = {(n, g) ~Z x G : cpn = g}.
The map Z~ G takes 1 to ( f, 1) with f = |G|, and the map G~G is the projection
on the second component.
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Proof. Writing Z - X-G for the t-translate, we construct an extension
equivalence X --7G.

Since X={(w,g) E W  G : j(w) = g - 1} with j : W-AG given by
Lemma 5(b), and since w E W is a pair (x, y) E AG ~ EG we can define X~G
by (w, g) ~ ( n, g ) if y ~ ZG has augmentation n. Observe that if g = ~m then
(~ - 1)y = x = g - 1 = (~ - 1) 03A3m-1i=0~i implies y - 03A3m-1i=0 ~i = r f-1 
with r E Z, hence n - m mod f, that is, (n, g ) E G.

If L/k is a Galois extension containing the maximal unramified extension
knr/k, we denote the Weil group of L/k by W(L/k) = tg e G(L/k) :g is a
¿Z-power of the Frobenius of L/k}. Recall [W, appendix 2], that, if Kab/K is the
maximal abelian extension, then W(Kab/K) is the image of the reciprocity map
Ilx - G(Kab/K).

With G = G(K/k), as usual, the field tower k C K C Knr defines an exact
sequence G(Knr/K) ~ G(Knr/k)~G of Galois groups.

LEMMA 7. There is a unique commutative diagram

with the map Z~W (Knr /K) taking 1 to the unique Frobenius liftof Knr/K.
Proof. Choose a Frobenius lift  E W(Knr/k) and let K be its image in G.

Define G~W(Knr/k) by (n, g) ~ ng’ where g’ is the unique element of the
inertia subgroup of Knr/k which maps to -nK g in G. This clearly gives such a
commutative diagram. And there is a unique map G~W(Knr/k) in it, because
the 1-cocycle À of Lemma 4 must be identically 1, by H1( G, 2) = 0 and ÍZ central
in G.

PROPOSITION 2. The units U of K fit into a G-module diagram

diagram 2p

in which the bottom row has extension class a and in which V -7 V’ is an

isomorphism. Moreover, V is then cohomologically trivial.
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Proof. There is a natural Weil group diagram

The reciprocity isomorphism Kx ~W(Kab/K) is a G-map which, by the
local Safarevic-Weil theorem [W], carries the local fundamental class uK/k E

H2(G, K x ) to the extension class of the top row of our diagram. Identifying the
bottom row with z - ~G by Lemma 7, and applying the translation functor
gives

by Lemma 6. The map Kx -z here is the normalized valuation [S, p. 205], so has
kemel U. The map V-W then also has kemel U and our diagram 2p follows,
with V - V’ the identity map, by suitably collapsing and introducing equality signs.
That 0~Kx ~V~0394G~0 has extension class a, in the sense of Section 1, follows
from Lemma 3, and the cohomological triviality of V from [GW; 11.3].

REMARK. The special diagram 2p in the proof actually has the identity map
V- V’. This has the consequence, because of HOMG(0394G, Z) = 0, that the exten-
sion class of the top row in diagram 2p is actually uniquely determined (cf. [GWL],
1.8), and this is the canonical class (3 e H1(G, Hom( W, U ) ) of Section 1. For our
purposes it is not essential that /3 always comes equipped with a reference to a so
we need only use any diagram 2p.

LEMMA 8. The map H0(G, Hom( W, U))-+HO(G, Hom( W, Kx», induced by
the inclusion U - K x, is surjective.

Proof. We must show that the map b in the long cohomology sequence induced
by 0 - U - Kx - Z - 0 is injective:

Since, [GWL, Section 4], H0(G, Hom( W, Z)) ~ Z/ e7, and H1(G, Hom( W, U» -
7-/eZ ED Z/eZ, with e the ramification index of K/k, this will follow if we know
that H1(G, Hom(W,Kx)) is cyclic. However from 0 - Z ~ W - 0394G ~ 0 we
get

with H1(G, Hom(0394G,Kx)) ~ H2(G,Kx) ~ Z/|G|Z cyclic and

H1(G,Hom(ÍZ,J(X)) = H1(G,J(X) = 0.


